

Understanding Linux Internetworking 1

 Understanding Linux
Internetworking

Introduction
The Internet: the largest internetwork ever created. In fact, the
term Internet (with a capital I) is just a shortened version of the
term internetwork, which means multiple networks connected
together. Most companies create some form of internetwork
when they connect their local-area network (LAN) to a wide area
network (WAN). For IP packets to be delivered from one
network to another network, IP routing is used — typically in
conjunction with dynamic routing protocols such as OSPF or
BGP. You can easily use Linux as an internetworking device and
connect hosts together on local networks and connect local
networks together and to the Internet.

Here’s what you’ll learn in this paper:

• The differences between layer 2 and layer 3
internetworking

• How to configure IP routing and bridging in Linux

• How to configure advanced Linux internetworking, such
as VLANs, VXLAN, and network packet filtering

To create an internetwork, you need to understand layer 2 and
layer 3 internetworking, MAC addresses, bridging, routing,
ACLs, VLANs, and VXLAN. We’ve got a lot to cover, so let’s get
started!

In this Paper
Layer 2 vs. Layer 3 Internetworking................ 2

Layer 2 Internetworking on
Linux Systems ... 3

Bridging ... 3

Spanning Tree ... 4

Layer 3 Internetworking View on
Linux Systems ... 5

Neighbor Table .. 5

IP Routing ... 6

Virtual LANs (VLANs) 7

Overlay Networks with VXLAN 9

In Summary ... 10

Appendix A: The Basics of
TCP/IP Addresses 11

Appendix B: The OSI Model......................... 12

White Paper by David Davis, ActualTech Media

Understanding Linux Internetworking 2

Layer 2 vs. Layer 3 Internetworking
In the OSI model, layer 1 is the physical layer that includes the physical media used to connect the
network. Specifications in this area describe cable qualities and the properties of electrical and optical
signals used to move bits around. Examples of layer 1 technologies include Gigabit Ethernet on category
5 cable, 100Gigabit Ethernet on parallel single mode fiber, and 802.11 wireless.

Elsewhere in this Paper: The OSI Model

If you’re not sure what is meant by the terms ‘Layer 2’ and ‘Layer 3’, please refer to Appendix B
for more information.

Above that is layer 2, or the data link layer; Ethernet is a broadly deployed layer 2 protocol. Ethernet
networking works to encapsulate data and pass that data in the form of frames. Frames leverage the
Media Access Control (MAC) addresses. An Ethernet frame includes the MAC address of the destination
interface on the target system as well the MAC address of the source interface on the sending system so
that the recipient device knows where the frame originated. Every Ethernet device, whether it’s installed
in a server, a switch, or a router, has a unique MAC address on their local network.

Transparent bridges are layer 2 devices that send all frames received on one port out the other bridge
ports, based on knowledge of the frame’s destination MAC address. Ethernet switches are multiport
network bridges. Multiport network bridges learn of the MAC addresses in the network and intelligently
forward frames based on the destination MAC address in the frame.

Layer 2 networking works in one of two ways:

• The device has explicit knowledge of a frame’s destination address, and the device sends the
frame out on the port where it knows the destination exists.

• In the event that the specific destination is unknown, the device falls back to sending the frame
to every node in the layer 2 domain via what is known as a broadcast.

Definition: Broadcast Domain

In Ethernet networking, layer 2 broadcasts don’t go past routers because that is the boundary
of the layer 2 network. Thus, the entire Ethernet network is the broadcast domain because no
broadcasts pass the Ethernet LAN.

The problem is that these approaches limit the ability for layer 2 networks alone to operate efficiently
beyond relatively small-scale locations and very simple topologies. Layer 2 networks suffer from two
major limitations. First, they allow for hosts to send traffic to unknown destinations. This causes
broadcasts, which impact every node in the broadcast domain. Many networks have been taken offline
due to "broadcast storms," or when many hosts are broadcasting at once. In contrast, layer 3 networks
do not allow for unknown communication. If a layer 3 router does not have a route to the destination
IP address, it will drop the packet instead of broadcasting like layer 2 does.

Understanding Linux Internetworking 3

Second, layer 2 networks have globally unique MAC addresses that are assigned by the manufacturer.
There is no organization to these addresses across manufacturers. If you have servers with Intel and
Mellanox network cards, the layer 2 MAC addresses will not have any commonality. Again, when
comparing layer 2 MAC addresses to layer 3 IP addresses, companies manually plan IP addressing
schemes so that there is a hierarchy to these IP addresses. An office may have all IP addresses within it
as part of a single IP subnet, like 10.0.0.0, allowing the company to use a single subnet to represent the
entire office. With layer 2 addressing, there is no ability to summarize or aggregate MAC addresses; every
unique MAC address must be shared with every host in the layer 2 domain.

When a node sends out an IP packet, it consults its routing and neighbor (ARP) tables and sends the
packet to the device most likely to get that packet where it needs to go. If the destination is in the same
layer 2 network, an entry in the neighbor (or ARP) table tells the sender how to use layer 2
internetworking. When IP devices need to communicate with other IP-based addresses that are outside
of their local layer 2 network, the route table may point to a specific router that will get the packet closer
to the destination or fall through to the default gateway, which is then responsible for getting the packet
to the destination. If no default route exists and a matching route does not exist, the packet will be
dropped.

Layer 2 Internetworking on Linux Systems
Initially, Linux networking was focused on end-node networking and layer 3 internetworking; however,
the advent of virtualization and containerization changed that forever. Today’s Linux networking stack
has rich layer 2 internetworking functionality and continues to evolve at a rapid pace.

Bridging
What do you do when you have two different Ethernet networks that need connecting? Build a bridge!
Bridges have traditionally been dedicated hardware devices, but you can easily create a bridge in Linux.
For example, when you have a Linux host that has two or more network interfaces, you can create a
bridge to pass traffic between these interfaces. You can add two interfaces to a Linux bridge with ip
link set and ip link add using:

david@debian:~$ sudo ip link add br0 type bridge

david@debian:~$ sudo ip link set eth0 master br0

david@debian:~$ sudo ip link set eth1 master br0

Here’s what is happening:

• The first command, ip link add, is creating a bridge named br0.

• The two ip link set commands add the two Ethernet interfaces, eth0 and eth1, to the new
bridge resulting in a connection between these two interfaces.

Once a bridge is created, you can view the MAC address table, which shows which ports can reach a
specific MAC address, with the bridge command. The command shown in the example below uses

Understanding Linux Internetworking 4

fdb show as its parameter. In this command, fdb stands for forwarding database management, and
show is a way for you to see the current contents of this database:

david@debian:~$ sudo bridge fdb show

[sudo] password for david:

01:00:5e:00:00:01 dev eth0 self permanent

33:33:00:00:00:01 dev eth0 self permanent

33:33:ff:d0:e8:7e dev eth0 self permanent

01:00:5e:00:00:fb dev eth0 self permanent

33:33:00:00:00:fb dev eth0 self permanent

01:00:5e:7f:ff:fa dev eth0 self permanent

01:00:5e:00:00:01 dev eth1 self permanent

33:33:00:00:00:01 dev eth1 self permanent

01:00:5e:00:00:01 dev eth2 self permanent

33:33:00:00:00:01 dev eth2 self permanent

Once the bridge has “bridged,” the different Ethernet networks, all the devices on these networks can
communicate, at least at layer 2 (see Figure 2).

Figure 2. Linux bridge configuration

Spanning Tree
The downside to big networks is that you can accidentally create loops that feed upon themselves and
that can ultimately bring the network down. For example, if you accidentally plug one switch port
directly into another port on the same switch, you may have created a loop. You can mitigate these loops
through the use of spanning trees. It’s also important to note that layer 3 has a TTL (time to live) field
that reduces the impact of loops — packets eventually die and are dropped — while layer 2 does not
have a TTL and will loop a frame forever.

A spanning tree is always recommended for any bridge or device configured with a bridge interface to
prevent bridging loops, reduce broadcast traffic, and provide automatic failover if you have redundant
links. You can perform most spanning tree configurations in Linux by using the mstpd-ctl command,
which controls the multiple spanning tree protocol daemon (MSTPD).

Bridges bridge frames, and routers route packets. Modern network switches can do a little of both
depending on the hardware and software on the device. The really cool thing about Linux is that it can
be used to create both layer 2 and layer 3 switches and routers, allowing you to both bridge and route
using Linux.

BRIDGE

eth0 eth1 eth2 ethN

Understanding Linux Internetworking 5

Layer 3 Internetworking View on Linux
Systems
The IP protocol is pretty heavily embedded in Linux systems, and it is the primary (and default) way for
Linux systems to communicate with the rest of the world, so we’ll start with layer 3 internetworking.
One interesting thing to note is that the tables, tools, and processes used by end-nodes to reach other
end-nodes are exactly the same as those used by routers (layer 3 internetworking devices) to forward
packets to end-nodes.

Neighbor Table
When an IP node wants to
communicate with a system in
the same layer 2 domain, it looks
in its neighbor table, or ARP
table, to determine how to
construct the Ethernet frame. If
the desired destination IP
address is not in the neighbor
table, the node issues an ARP
request, which is broadcast to
everyone in the layer 2 domain,
that asks, “Please tell me the
MAC address for the node with
IP address X.X.X.X.” Assuming
the target device is available, the
node with that IP address will
respond. In Linux, you view (and
manipulate) the Neighbor table
using the ip neighbor show

command (also known as ip
neighbor show, ip neigh
show, or even just ip n s):

david@debian:~$ ip
neigh show

172.20.10.2 dev eth0
lladdr
ac:bc:32:9c:a6:3b
REACHABLE

172.20.10.1 dev eth0
lladdr
72:70:0d:4c:6b:64 STALE

 Bridging Loops
Because bridges forward broadcast packets out every port, the
broadcast is amplified by both devices when there are multiple paths
between two bridges. For example, if two bridges are connected with
two links, the first bridge receives a broadcast frame from an
attached host. The bridge will take this single frame and send one
copy on each link to the other bridge. This second bridge will receive
these two broadcast frames, one on each link, and will make new
copies, sending them back on each link. This back and forth
broadcast replication, known as a "broadcast storm," will continue
forever.

Unlike layer 3 packets, layer 2 frames do not possess a TTL field. A
packet contains a special field that is set by the host that first created
the packet. Each router along the path will decrement this field by
1. If a misconfiguration in the network causes a similar loop, the
TTL field will eventually be decremented to 0 and the packet will
be dropped. Because a layer 2 frame does not have this field, there is
no limit to how many bridges a frame can pass through. Also,
because the packet is being bridged and not routed, the TTL field
will never be examined by any of the devices and never decremented.
The lack of TTL is one of the major problems with layer 2 networks.

The Spanning Tree Protocol (STP) does not add a TTL field to the
frame, but it will prevent layer 2 loops from forming, preventing the
broadcast storm described earlier. Bridges that speak STP will
exchange information about the network using Bridge Protocol Data
Units (BPDUs). Through this BPDU exchange, the bridges will build
a loop-free "tree" of the network. In our two-switch example, STP
would disable one of the two links and never send traffic over it,
until the active link failed

Understanding Linux Internetworking 6

You’ll receive a list of IP addresses that have been recently resolved to MAC addresses, their associated
MAC addresses, which interface is used to reach the layer 2 network where they can be reached, and the
confidence of knowing these IP/MAC address relationships. Typically, the neighbor table is maintained
dynamically based on the ARP protocol; however, it can be manually controlled with the ip neighbor
command.

IP Routing
The routing table has knowledge of specific networks, or summaries of networks, that a node can reach.
Minimally, each routing table will have a “default route” where the node can send any IP packet that is
not in an attached layer 2 network. You can view the routing table with the ip route show command,
like this:

david@debian:~$ ip route show

default via 172.20.10.1 dev eth0 proto static metric 1024

172.20.10.0/28 dev eth0 proto kernel scope link src 172.20.10.10

Here you can see that the routing table knows that the 172.20.10.0/28 network is a locally attached layer
2 network. The routing table also includes a route to the default gateway (172.20.10.1), which Linux
calls “default,” that will be used to reach any node that isn’t on the local network. If you’re used to
networking on non-Linux systems, you may have seen a default route expressed as something like
0.0.0.0/0.

Routes can be added or deleted from the routing table in a few different ways:

• By assigning IP addresses to node interfaces

• By manually adding or removing them using the ip route command

• By dynamically inserting them using routing protocols

For example, to create a static route to router 192.168.1.1 through the eth1 interfaces, you would use the
ip route command, like this:

ip route add default via 192.168.1.1 dev eth1

However, once the host is restarted, this route disappears because it’s not persistent. To make this route
persistent, you would edit the /etc/network/interfaces file and, after the network device configuration,
add a post-up command with the same ip route command so that this static route is added every
time the Linux host is restarted or the network interface is brought up. Here’s an example of what it
might look like in the /etc/network/interfaces file:

iface eth1 inet static

address 192.168.1.1

netmask 255.255.255.0

post-up ip route add default via 192.168.1.1 dev eth1

The purpose of the post-up command is to add the default route only after the network interface is
brought up.

Understanding Linux Internetworking 7

Definition: Free Range Routing

Free range routing (FRR) is an open-source Linux suite of IP routing protocols that includes
BGP, IS-IS, LDP, OSPF, PIM, and RIP. Because it integrates with a wide variety of Linux stacks, FRR has
a wide range of use cases including connecting hosts, VMs, and containers to the network, Internet
access routers, and Internet peering. Based on the Quagga project, FRR is used by many companies for
many use cases around the world.

Virtual LANs (VLANs)
You already know that a LAN is a local area network spanning a relatively small physical area. Building
on that concept, a virtual LAN (or VLAN) allows LANs to span multiple switches across very large
networks while still achieving traffic isolation from other networks. VLANs are used to isolate hosts or
applications from each other for the purposes of security, data flow, and scale. Individual interfaces can
be a part of one or more VLANs. When they are a part of more than one VLAN, in order to maintain
some semblance of sanity, the frames traversing that link are tagged with an IEEE 802.1Q tag. These tags
are an additional piece of information placed at the front of the frame to identify the VLAN. Interfaces
carrying multiple VLANs are often called trunks. VLANs are configured using both the ip link and
bridge Linux commands.

Suppose you want a Linux system to have eth1 in one bridge (VLAN11), eth3 in a second bridge
(VLAN12), and eth2 in both (i.e. a tagged trunk). First, we make sure the 802.1Q trunking driver is
installed. Then we create a bridge, add the ports to the bridge, and make sure the ports are part of the
desired set of VLANs. Notice that both eth1 and eth3 used untagged VLANs. However, per the bridge’s
configuration, traffic from those ports will be placed onto their configured VLANs, which are VLAN 11
and VLAN 12 in this case. Untagged traffic from the trunk port will be placed into the native VLAN,
which is VLAN 1 by default.

If you look at the Ethernet frames, you can’t tell that the interfaces are part of a VLAN; however, eth2 is
a member of both VLANs, and all frames carry the 802.1Q VLAN tag (shown in Figure 3).

In the following configuration, we ensure that the 802.1q module is loaded, add bridge0 (br0) as the
native VLAN (VLAN 1), add the Ethernet interfaces to br0, assign eth1 and eth3 to their respective
VLANs (11 and 12), and bring all interfaces up.

Figure 3. Tagged and untagged
VLAN traffic

VLAN 11 VLAN 12

eth1 eth2 eth3

UNTAGGED 801.1Q
TAGGED
TRUNK

UNTAGGED

Understanding Linux Internetworking 8

sudo modprobe 8021q

sudo ip link add br0 type bridge vlan_filtering 1

sudo ip link set eth1 master br0

sudo ip link set eth2 master br0

sudo ip link set eth3 master br0

sudo bridge vlan add dev eth1 vid 11 pvid untagged

sudo bridge vlan add dev eth3 vid 12 pvid untagged

sudo bridge vlan add dev eth2 vid 11

sudo bridge vlan add dev eth2 vid 12

sudo ip link set up dev br0

sudo ip link set up dev eth1

sudo ip link set up dev eth2

sudo ip link set up dev eth3

To help you better understand the configuration above, there are a few things that you should know:

• In the command sudo bridge vlan add dev eth1 vid 11 pvid untagged, the vid
parameter is the VLAN ID. VLAN IDs are used to specify which VLAN the interface is assigned
to. The pvid parameter specifies the private VLAN ID. In this case, the private VLAN is left
untagged.

• In the example above, MAC address tables are per-VLAN. If you were to look at the MAC address
table in VLAN 11 and VLAN 12, you’d find that they would be very different. The trunk link
would have a combination of MAC addresses from both VLAN 11 and 12.

Here are a few useful commands to
see what’s going on:

• bridge link show. Check
the status of the bridge links

• bridge vlan show. Check
the status of the VLANs traversing the
bridge

• bridge fdb show. View the
forwarding database

 Much ado about 802.1q
The purpose of the VLAN is to have multiple devices on the
same VLAN communicate as if they were the only devices on
that network, giving administrators flexibility that they didn’t
have with physical networks alone. The IEEE networking
standard that defines VLANs (or virtual local area networks) is
802.1Q. This standard details how Ethernet frames will have a
VLAN tag, or identifier, inserted into them and how Ethernet
bridges and switches will handle frames with the VLAN tags.
Any Ethernet frame that doesn’t have a tag stays on the native
VLAN, whereas frames that do have tags are only seen by other
network devices on that VLAN. Network links between switches
that carry multiple VLANs are called trunk links

Understanding Linux Internetworking 9

Overlay Networks with VXLAN
An overlay network is essentially a computer network that is built on top of another network. The overlay
network is commonly called the “virtual network” that runs on top of an existing “physical network”
(and thus, the “overlay” and “underlay” terminology). It’s important to note that VLANs discussed in the
last section are an example of a virtual network overlay on a L2 network.

VXLAN, or Virtual eXtensible LAN, is an
overlay network that runs on top of an
existing IP network. VXLAN has a number of
different use cases, including creating a
massively scalable network (up to 16.7 million
possible networks) and connecting data
centers at layer 2 across a layer 3 network.
VXLAN encapsulates frames with layer 3/4
(IP/UDP), sending them over both layer 2 and
layer 3 networks. The benefits of VXLAN on
layer 2 (IP) networks are global addressing,
better scale, more resiliency, and better use of
available bandwidth.

The connections between endpoints are called
VXLAN tunnels. These VXLAN tunnels are
encapsulating traffic as it flows across the
network between the VXLAN tunnel
endpoints (also called VTEPs, or VXLAN
Tunnel EndPoints). The VXLAN
encapsulation allows for the transport of
traffic over networks that end hosts do not
need knowledge of. This means a host could
send an ARP request to another host, across
the network, through a VxLAN tunnel, and never know about the VxLAN tunnel or the underlay
network it travels through.

VTEPs can be implemented in hardware or software. The configuration of VTEPs and creation of the
overlay networks is typically implemented using a commercial controller, such as VMware NSX or
Midokura MidoNet, or using a protocol such as BGP EVPN over. However, some people build their own
special purpose controllers. Regardless of which of these techniques you use, Linux provides the
underlying VTEP building block.

If you have two Linux systems and you want to bridge them with VXLAN, you would install a bridge
on both systems, add a local IP address to that bridge, and add a VTEP to that bridge pointing the VTEP
to the other Linux host (shown in Figure 4).

 What is encapsulation?
Encapsulation is when one piece of data or packet on a
network is wrapped up in another type of data or
network packet. For example, a text file could be
encapsulated in an archive file. In networking,
encapsulation is used as a means to move traffic that
might otherwise not be able to traverse the
communications mechanism. For example, you may
encapsulate an IP packet encapsulated in an Ethernet
frame to move traffic between local hosts, but
encapsulation can even happen between the same two
protocols. IP could be encapsulated with IP. A
common modern-day example of encapsulation is the
iSCSI storage protocol. In an iSCSI system, iSCSI
commands and a storage payload are encapsulated
inside a TCP packet, which is encapsulated inside an
IP packet, which is, in turn, encapsulated inside an
Ethernet packet. This multi-level encapsulation
process enables what would have been local SCSI
storage commands to transparently traverse an
Ethernet-based TCP/IP network.

Understanding Linux Internetworking 10

Figure 4. Two Linux hosts connected with
VXLAN

Linux System 1

sudo ip link add br0 type bridge vlan_filtering 1

sudo ip link add vlan10 type vlan id 10 link bridge protocol none

sudo ip addr add 10.0.0.1/24 dev vlan10

sudo ip link add vtep10 type vxlan id 1010 local 10.1.0.1 remote 10.3.0.1 learning

sudo ip link set eth1 master br0

sudo bridge vlan add dev eth1 vid 10 pvid untagged

Linux System 2

sudo ip link add br0 type bridge vlan_filtering 1

sudo ip link add vlan10 type vlan id 10 link bridge protocol none

sudo ip addr add 10.0.0.2/24 dev vlan10

sudo ip link add vtep10 type vxlan id 1010 local 10.3.0.1 remote 10.1.0.1 learning

sudo ip link set eth1 master br0

sudo bridge vlan add dev eth1 vid 10 pvid untagged

Now these two systems both exist on the 10.0.0.x/24 layer 2 network (via the VXLAN overlay) even
though they are connected by a layer 3 IP fabric. It’s also worth noting that the hosts are completely
isolated from the underlying layer 3 network.

In Summary
After reading this paper, you should now have a good understanding of the basics of Linux
internetworking. You learned about layer 2 versus layer 3 networking, bridging, routing, traffic filtering,
VXLAN, and more. Hopefully you will spend time learning more about Linux networking
administration. Good luck!

L3 (IP)
NETWORK

HOST 1 VTEP

BRIDGE
VLAN 10

eth1

HOST 2 VTEP

BRIDGE
VLAN 10

eth1

Understanding Linux Internetworking 11

Appendix A: The Basics of TCP/IP Addresses
IP version 4 addressing, known as IPv4, uses a 32-bit number to identify every host/device. These
addresses are usually written using dotted decimal, such as 192.168.192.168. Every device has a configured
subnet mask, such as 255.255.255.0, that tells the device which part of the IP address is used to identify
the network and which part is the device.

The 32-bit address is broken up into four 8-bit sections called octets. For example, the decimal to binary
conversation for the above IP address (192.168.192.168) is

11000000 10101000 11000000 10101000.

The conversation of the subnet mask from 255.255.255.0 is

11111111 11111111 11111111 00000000

How, exactly, does your networking stack know that 192.168.10.2 is not in the same network as
192.168.192.168 when using a 255.255.255.0 subnet mask? If you’ve ever wondered how the math
works, the magic lies in the use of the bitwise AND operator. In the figure below, you can see that
performing a bitwise AND operation between the origination address and the local network’s subnet
mask results in a calculation that shows that the local network is 192.168.192.0. When a node in this
network wants to communicate with the IP address 192.168.10.2, a similar operation is performed on
this destination address with the result indicating that the destination address is 192.168.10.0. Because
the destination address has been determined to be non-local, this traffic is sent to the local layer 3 device,
typically a router, which then forwards the packet to the correct destination network.

Understanding Linux Internetworking 12

Appendix B: The OSI Model
Before we jump deeply into the networking pool, let’s go over the model on
which all networking standards are based: the International Organization of
Standardization Open Systems Interconnection (ISO OSI) model. This model
has been used for decades to describe the networking stack, and it describes
the very wires (or lack thereof, in the case of wireless) that transfer data to the
applications that operate on the network. This all-encompassing model has
driven network development, and most products on the networking market
are specifically designed to service one or more layers of the model, which are
shown in this callout. In order for an application to “talk” to another
application on another machine on the network, that application has to
traverse down its own networking stack, ultimately placing its information
onto the wireless or media that connects the two machines. The application,
however, doesn’t need to handle that task itself. It simply presents its data to
the next lower layer—the presentation layer—which processes what it gets
from the application layer and then sends it down the stack to the session layer
and so forth. This is one of the reasons that applications don’t need to develop
their own communications stacks and can just rely on what is provided to
them in the operating system.

Last updated: December 2017
Copyright 2017 ActualTech Media; not responsible for errors or omissions

M
ED

IA
 L

AY
ER

S
HO

ST
 L

AY
ER

S

APPLICATION

NETWORK PROCESS
TO APPLICATION

 DA
TA

PRESENTATION

DATA REPRESENTATION
AND ENCRYPTION

 DA
TA

SESSION

INTERHOST
COMMUNICATION

 DA
TA

TRANSPORT

CONNECTION AND
RELIABILITY

SE
GM

EN
T

NETWORK

LOGICAL ADDRESSING
PATH DETERMINATION

 PA
CK

ET

DATA LINK

PHYSICAL ADDRESSING
(MAC AND LLC)

 FR
AM

ES

PHYSICAL

MEDIA, SIGNAL, AND
BINARY TRANSMISSION

 BI
TS

