

The Essentials of Linux Network Administration 1

 The Essentials of Linux
Network Administration

Introduction
If you’re ever going to do anything interesting with Linux, just
like any other OS, you need to be connected to a network,
whether it’s your own local company network or the public
Internet. In this paper to learn what you need to know to
connect your Linux host to the network as well as some tools to
help you troubleshoot if things don’t go exactly as expected.

Here’s what you’ll learn:

• The different types of network interfaces in Linux

• How to configure IP addressing

• Networking troubleshooting tools available in Linux

• How to connect multiple network interfaces together to
form a bond

We’ll kick it off by talking about Linux network interfaces.

In this Paper
Understanding Linux Network Interfaces 2

MAC Addresses .. 3

IP Addressing .. 3

DHCP .. 5

DNS .. 6

Network Statistics and Counters 7

Network Interface Bonding 10

In Summary ... 12

White Paper by David Davis, ActualTech Media

The Essentials of Linux Network Administration 2

Understanding Linux Network Interfaces
Different versions of Linux may name network interfaces differently (see the callout about how Linux
network device names are changing). In general, just about all Linux operating systems will have at least
two network interfaces. They are:

• Loopback. The loopback (lo) interface will have an IP address of 127.0.0.1, which represents the
host itself. Suppose you want to open a web page running on the same Linux server you are on.
You could open http://127.0.0.1 in your web browser. That IP address won’t be accessible over
the network.

• Ethernet. The ethernet 0 (eth0) interface is typically the connection to the local network. Even
if you are running Linux in a virtual machine (VM), you’ll still have an eth0 interface that
connects to the physical network interface of the host. Most commonly, you should ensure that
eth0 is in an UP state and has an IP address so that you can communicate with the local network
and likely over the Internet.

The Linux command to
configure network
interfaces/ devices/ links
(whatever term you use)
is ip link. In the
following example, you
can see how ip link
(with no other options)
shows two different
interfaces, their status,
and their MAC addresses
associated with each one
(we’ll talk more about
MAC addresses, next
page):

 Predictable network interface naming convention
If you’ve been in IT for any length of time, you know that the only constant is
change, and that applies to network interface naming conventions as well. Up
until very recently, the only naming convention you had to worry about was the
one that was just presented. However, with systems featuring systemd v197 or
later, common network names such as “eth0” will be assigned more predictable
names based on what is known as the predictable network interface naming
convention. So, rather than an interface named eth0, you may have one named
ens3 or enp0s3. Ironically, under older versions of systemd, there was
predictability about the existence of eth0. Under the Predictable Network
Interface naming guidelines, however, there isn’t a guaranteed standard network
interface name across systems. The new scheme does have a number of benefits,
the most important of which is that the physical interface to interface name
association will survive reboots, even if you add hardware. Under the old system,
if you added a network adapter, you ran the risk of automatically changing
interface names, which had serious consequences for your configuration. For
the purposes of this paper, we’re sticking with the legacy naming convention,
but as you continue your Linux networking journey, the predictable network
interface naming convention is the new paradigm you need to be aware of.

For more information this change, please visit
https://www.freedesktop.org/wiki/Software/systemd/
PredictableNetworkInterfaceNames/

The Essentials of Linux Network Administration 3

david@debian:~$ ip link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT
group default

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT
group default qlen 1000

 link/ether 00:50:56:a3:71:f5 brd ff:ff:ff:ff:ff:ff

The ip link command is also used to configure network interfaces. For example, you can change the
status of interfaces with ip link set [dev] { up | down }. You can also reconfigure network
interfaces with a command like ip link set lo mtu 1500.

For more information on the ip link command use man ip link.

MAC Addresses
A media access control (MAC) address is the unique identifier assigned to a network interface at layer 2—
the Data Link layer—of the OSI Model. A network interface always has a MAC address—often referred
to as the hardware address—even if it does not have an IP address. MAC addresses are assigned at the time
that a network adapter is manufactured or, if it’s a virtualized network adapter, the time that the adapter
is created and appears as six groups of two hexadecimal digits each. On the Ethernet interface, eth0,
shown above, the MAC address is also called the link or ether address. In the ip link output above, you
can see that the MAC address in
this case is 00:50:56:a3:71:f5.

But what if you want to know
the IP addresses of these network
interfaces? That’s next!

IP Addressing
They are unique on the same
network, every device has at least
one, and addresses typically fall
somewhere between 1.1.1.1 and
255.255.255.255. What are they?
IP addresses, of course! Let’s
assume that you already know
the basics around TCP/IP, and
we’ll focus on how to work with
them in Linux. Later, we’ll talk
about how to configure IP addresses on your Linux machine.

 Going back to the old
If you really want or need to use a deprecated command
such as ifconfig, arp, or route, you still can. You just
have to install the net-tools package on your system. On a
Debian system, like the one shown in these examples, as a
privileged (root) user, run apt-get install net-
tools. If you’re using a Linux distribution that uses yum
as a package manager, such as CentOS, you can install net-
tools using the yum -y install net-tools command.

If you’re only doing this because you’re comfortable with
the old ways, however, we recommend that you start to
phase out your use of these old commands because there’s
no guarantee that they’ll be around forever, they aren’t kept
up to date, and they may not support all the features of the
new commands.

The Essentials of Linux Network Administration 4

To view IP addresses, use the ip address command, or just ip addr, like this:
david@debian:~$ ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default
qlen 1000

 link/ether 00:50:56:a3:71:f5 brd ff:ff:ff:ff:ff:ff

 inet 192.168.1.80/24 brd 192.168.1.255 scope global dynamic eth0

As you can see, the IP address of the loopback interface is 127.0.0.1. What’s the address of the eth0
interface in this case? The eth0 “inet” address (IPV4 address) is 192.168.1.80, and it’s a dynamic address,
received via DHCP, which we’ll talk about below.

When it comes to Linux networking tools, there is one that just about everyone has heard of, and that is
ping. Ping, which began life as an acronym but now enjoys its status as a full-fledged word, is the most
basic network test tool around for testing network reachability. It sends out an Internet Control Message
Protocol (ICMP) packet across the network and notifies you whether there is a response. If a host is up
and able to communicate on the network, an ICMP response will be returned. If, however, a host is not
reachable, you will get a notice that the host was unreachable or timed out (meaning that the ping test
failed). Here’s an example of a host that is unreachable:

david@debian:~$ ping -c5 192.168.192.196

PING 192.168.192.196 (192.168.192.196) 56(84) bytes of data.

--- 192.168.192.196 ping statistics ---

5 packets transmitted, 0 received, 100% packet loss, time 4018ms

(The “-c5” was used to send just five ping packets; otherwise, ping will continue forever.)

In these results, five packets were transmitted, and all of them received no response, so there was 100%
packet loss. What that means is that this host is unreachable, or down.

Another common Linux network troubleshooting tool is traceroute. Traceroute probes the network
between the local system and a destination, gathering information about each IP router in the path. The
traceroute command is useful when you think there may be a network issue, such as a host down along
a path or a slow response from one of the intermediary nodes, and you want to find out which node is
creating the problem.

The Essentials of Linux Network Administration 5

Here’s an example:
david@debian:~$ traceroute www.apple.com

traceroute to www.apple.com (23.46.180.139), 30 hops max, 60 byte packets

 1 192.168.1.1 (192.168.1.1) 0.225 ms 0.273 ms 0.283 ms

 2 10.10.0.1 (10.10.0.1) 11.046 ms 11.938 ms 16.645 ms

 3 pool.hargray.net (64.202.123.123) 28.169 ms 22.060 ms 21.785 ms

 4 10ge14-8.core1.atl1.he.net (216.66.49.77) 22.552 ms 22.391 ms 19.566 ms

 5 atx-brdr-01.inet.qwest.net (63.146.26.69) 23.189 ms 21.705 ms 21.952 ms

 6 a23-46-180-139.deploy.static.akamaitechnologies.com (23.46.180.139) 21.116 ms
21.365 ms 19.497 ms

But why are some of those addresses listed on the left actually names instead of IP addresses? That’s
because domain name system (DNS) is replacing the IP with a friendly name. You’ll learn about DNS in
later in this paper.

Remember, every Linux command shown here has verbose instructions on how to use it in the man
page. Just type man commandname to learn more.

DHCP
What if you have dozens, hundreds, or thousands of computers on your network? It would be incredibly
time-consuming to manually assign IP addresses and to actually track which machines have which IP
address. That’s where the dynamic host configuration protocol (DHCP) comes in. DHCP is used to obtain
an IP address when a host or device first comes on the network.

DHCP is commonly used for client systems or devices that don’t experience any side effects from a
periodically changing IP address. On server systems, administrators either manually configure static IP
addresses, or they create what are known as static DHCP reservations that are tied to the MAC address
of the network adapter. These static reservations ensure that the network adapter will get the same IP
address every time it restarts.

Here’s how the typical DHCP process works:
1. When a computer starts up, it sends a DHCP request out on the network.

2. Assuming a DHCP server is present, a DHCP server responds with the IP address
configuration for that device.

3. That IP address is marked as reserved so that it’s not accidentally assigned to some other
device.

To learn more about the exact packets that make up the process of obtaining an IP address, see this
diagram: http://www.smartpctricks.com/wp-content/uploads/2014/04/DHCP-Packets-
Establishment.png.

Note that the prior text said, “IP address configuration” and not just “IP address.” The IP configuration
that is returned to a requesting client contains, at a minimum, the IP address, the IP subnet mask, the IP
default gateway, and DNS server details. Most end user devices are configured to use DHCP.

The Essentials of Linux Network Administration 6

Most operating systems, including Linux, are configured to use a DHCP client to obtain their initial IP
address. You can tell an interface is using DHCP if its IP address is set to DYNAMIC, as in the output
below.

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default
qlen 1000

 link/ether 00:50:56:a3:71:f5 brd ff:ff:ff:ff:ff:ff

 inet 192.168.1.80/24 brd 192.168.1.255 scope global dynamic eth0

The local configuration file for the DHCP client (called dhclient) is at /etc/dhcp/dhclient.conf. This
is a configuration file that dictates to Linux how it will receive IP configuration information from a
DHCP server. To check the status on the DHCP client, you can cat the syslog (system log file) and
grep for dhcp, like this:

david@debian:~$ sudo grep -Ei dhcp /var/log/syslog

May 15 08:37:44 debian dhclient: DHCPREQUEST on eth0 to 192.168.1.1 port 67

May 15 08:37:44 debian dhclient: DHCPACK from 192.168.1.1

May 15 08:37:44 debian NetworkManager[425]: <info> (eth0): DHCPv4 state changed
renew -> renew

May 15 08:37:44 debian nm-dispatcher: Dispatching action 'dhcp4-change' for eth0

You can find more details on the DHCP client leases in the files /var/lib/dhcp/*.leases

DNS
Computers that connect to each other using TCP/IP (the most prevalent form of connection protocol)
talk with each other using IP addresses; however, it would be really painful to have to remember the IP
address of everything you want to connect to. Imagine having to recall the IP address of Google each
time you wanted to search the web. Domain name system (DNS) is used to map IP addresses to names.
Everyone is familiar with using their web browser, entering a friendly name like google.com or
apple.com, and being taken to the company's website without ever having to type an IP address. It’s
DNS behind the scenes that is mapping that friendly name to an IP address by doing a DNS lookup. To
find out if your Linux host is using DNS, we will be running through some troubleshooting commands,
such as dig and nslookup, later.

That being said, the basics of DNS in Linux are this:

• A local file called /etc/hosts is used for the first point of lookup for any host name prior to going
out to a DNS server on the network. If the name is found there, no further searches are
performed. As the superuser, you have the option to edit the hosts file and configure a static
name to IP address mapping.

• The /etc/resolv.conf file shows the local domains to be searched and what server names to use
for DNS resolution.

The Essentials of Linux Network Administration 7

For example, here’s what a sample resolv.conf file looks like:
david@debian:~$ sudo cat /etc/resolv.conf

search wiredbraincoffee.com wiredbraincoffee.com.

nameserver 192.168.1.1

In this case, the default domain is wiredbraincoffee.com, and the only name server is 192.168.1.1.

DNS Resolution

By default, DNS name resolution works as described here, but is very modular. The hosts
portion of /etc/nsswitch.conf can include directory services like NIS+ or LDAP as well.

When it comes to troubleshooting DNS, you should be aware of the following important tools:

• dig. The domain Internet groper, or dig, performs verbose DNS lookups and is great for
troubleshooting DNS issues.

• getent ahosts. The getent tool with the ahosts option enumerates name service switch files,
specifically for host entries.

• nslookup. The name server lookup, or nslookup, performs a variety of different DNS server
lookups: mail server lookups, reverse lookups, and more. It’s commonly used to look up the IP
address of a host.

Network Statistics and Counters
When performing network troubleshooting, it’s always good to gather some statistics to answer
questions like, “Is the network interface even transmitting any data? Is the interface taking errors? What
process is sending all that traffic?”

Here’s an example of the netstat command displaying active processes that have active network
interface connections:

Here’s an example of the ip -s link command showing us the statistics for our network links:

david@debian:~$ ip -s link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT
group default

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 RX: bytes packets errors dropped overrun mcast

 63339 505 0 0 0 0

 TX: bytes packets errors dropped carrier collsns

 63339 505 0 0 0 0

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT
group default qlen 1000

 link/ether 00:50:56:a3:71:f5 brd ff:ff:ff:ff:ff:ff

 RX: bytes packets errors dropped overrun mcast

 410864536 1342597 0 0 0 925004

The Essentials of Linux Network Administration 8

 TX: bytes packets errors dropped carrier collsns

 20398071 163673 0 0 0 0

Here’s an example of the netstat command showing us what our active processes are that have the
network interface open:

david@debian:~$ netstat
Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 debian:ssh iMac:52985 ESTABLISHED

tcp 0 0 debian:40980 192.168.1.128:37518 TIME_WAIT

tcp6 1 0 localhost:33904 localhost:ipp CLOSE_WAIT

Active UNIX domain sockets (w/o servers)

Proto RefCnt Flags Type I-Node Path

unix 20 [] DGRAM 8963 /run/systemd/journal/dev-log

unix 6 [] DGRAM 8972 /run/systemd/journal/socket

unix 2 [] DGRAM 15451 /run/user/1000/systemd/notify

(output truncated)

And here’s an example of the netstat -l command that shows us the active listening services on this
host:

david@debian:~$ netstat -l

Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 localhost:mysql *:* LISTEN

tcp 0 0 *:48875 *:* LISTEN

tcp 0 0 *:sunrpc *:* LISTEN

tcp 0 0 *:ssh *:* LISTEN

tcp 0 0 localhost:ipp *:* LISTEN

Active UNIX domain sockets (only servers)

Proto RefCnt Flags Type State I-Node Path

unix 2 [ACC] SEQPACKET LISTENING 8197 /run/udev/control

unix 2 [ACC] STREAM LISTENING 8200 /run/systemd/journal/stdout

unix 2 [ACC] STREAM LISTENING 15895 /run/user/1000/keyring/pkcs11

(output truncated)

So far, we have covered a lot about how to view and show network information, but nothing about how
to change network configurations. Let’s cover some of the most common network configurations that
someone new to Linux might want to perform.

We’ll start off with changing an IP address. When it comes to making any changes in Linux, keep in
mind that you can make two types of changes:

• Changes that are immediately effective but are non-persistent (meaning they won’t survive a
restart of the operating system)

• Changes that are effective after the next restart of the OS, known as persistent changes

The Essentials of Linux Network Administration 9

To make an immediately effective change in your IP configuration, you use the ip command with its
variety of command options such as link, route, and address. To use the ip command set, you’ll have
to have the iproute2 package installed. It usually is installed by default, but that depends on which
version of Linux you are using.

Here we use the ip address command, like this:
root@debian:/home/david# ip address add 10.10.10.10/8 dev eth0

However, once the Linux machine is restarted, the default IP address will be back on interface eth0.

To make this IP address change
persistent on a Debian or
Ubuntu system, you need to edit
the file /etc/network/interfaces
and add the configuration for
eth0. To edit this file, use the
nano command like this: nano
/etc/network/interfaces. If you
are using CentOS or RHEL (Red
Hat Enterprise Linux), the same
configuration is found in the
/etc/sysconfig/network-scripts
directory.

To make the IP address change
take effect, you can either reboot
the host or use the
ifdown/ifup commands. At
that point, the ip address
command output might look
like this:

david@debian:~$ ip address show dev eth0

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN group
default qlen 1000

 link/ether 00:0c:29:d0:e8:7e brd ff:ff:ff:ff:ff:ff

 inet 192.168.1.72/24 brd 192.168.1.255 scope global eth0

 valid_lft forever preferred_lft forever

 inet6 fe80::20c:29ff:fed0:e87e/64 scope link

 valid_lft forever preferred_lft forever

You can see that the new IP address has been added, and making the change this way ensures that it is
persistent after the Linux OS restart.

 Adventures in editing text files

Editing of text files in Linux is usually done with the vi,
emacs, or nano commands. The “battle” between vi and
emacs is long running, and their followers are fanatical. The
vi text editor has been around since 1976 and is known for
its lack of user-friendliness. With vi you must already know,
or be willing to read the documentation on, how to use
specific command options to even start editing text. Similar
to vi, emacs has also been around since the 1970’s and isn’t
known for its ease of use. Contrary to vi, emacs has so many
plugins (including terminal, calculator, email, and web
browser) that it feels like its own operating system. Nano,
on the other hand, was created in 1999 and is very user-
friendly because it works just like a traditional word
processing application. For those who are new to editing
text in Linux, my recommendation is to use nano.

The Essentials of Linux Network Administration 10

To recap, here are some of the common network changes that you will probably want to make in order
for your Linux networking configuration to persist across reboots:

• Change the state of network interfaces by using the ifdown / ifup command set.

• Add DNS name servers
to an interface by
editing the
/etc/resolv.conf file or
the
/etc/network/interfaces
file.

• Change the hostname of
the server by editing the
/etc/hostname and
/etc/hosts file, and
verifying it with
hostname -f.

Network Interface
Bonding
There are times when you need
more bandwidth than a single
interface can provide, or you
want some form of link
redundancy in case of a cabling
or other network problem. This
link redundancy function goes
by many names, depending on
the vendor: EtherChannel,
VMware PortGroups, Bonds,
and Link Aggregation Groups
(LAG) are just a few. Linux also
provides this capability and calls
it bonding. It allows you to create
a single logical network link that
is comprised of multiple
physical links and that scales up as you add more interfaces, can provide load balancing across the
interfaces, and can provide failover protection.

 ifdown and ifup commands
The ifdown and ifup commands are used to restart an
interface without having to restart a whole server. Once
you make a change to a network interface configuration,
you need to force that interface to reread its configuration
file. You accomplish this by bringing the interface down
with the ifdown command and then bringing it back up
with the ifup command. When the ifup command is
executed, the configuration file is reread and the interface
is brought back into operation with its newly minted
parameters.

By the way, the ifdown and ifup commands aren’t included
in the default path on all Linux distributions. As such, you
may have to explicitly include the full path to the
command. For example, to bring down the eth0 interface,
you may need to type /sbin/ifdown eth0. Likewise, to bring
the interface back up, you may need to type /sbin/ifup eth0.

The /etc/network/interfaces file is used to tell ifup and
ifdown how to configure network interfaces as those
interfaces are brought up and down. For example, you
would configure an interface with a static IP address by
entering the details in the interfaces file. More information
on the interfaces file can be found by typing man
interfaces.

A word of warning: If you’re connected to your Linux
server via SSH, be mindful of which interface you’re
working with. If you accidentally bring down the network
interface that your SSH connection is using, you might lose
remote access to the server.

The Essentials of Linux Network Administration 11

To use network bonding, you need to install the bonding kernel module via the modprobe command.
Modprobe allows you to add additional capability to the Linux kernel. It works like this:

david@debian:~$ sudo modprobe bonding

At this point, you can create a bond using the iproute2 tools, which allow you to establish the bond as
well as set its mode. You can get some hints with ip link help and ip link help bond.

Please note that you may read about ifenslave when searching the Internet; however, that
tool has been deprecated with the iproute2 tools taking its place. You will find that many

once-common Linux commands become obsolete over time, so make sure to stay current!

You can put interfaces eth0, eth1, and eth2 into a bond like this (Figure 1):
david@debian:~$ sudo ip link add bond0 type bond mode 802.3ad

david@debian:~$ sudo ip link set eth0 master bond0

david@debian:~$ sudo ip link set eth1 master bond0

david@debian:~$ sudo ip link set eth2 master bond0

Figure 1. Multiple Ethernet
interfaces bonded into a single
network interface

One of the most common parameters to set when creating a bond is the “mode,” which is how the bond
interacts with the connected network.

Bonding, when incorrectly configured or cabled, can be the source of some pretty messy network
problems; 802.3ad mode runs the Link Aggregation Control Protocol (LACP) with the switch or server
at the other end of the bond to make sure that everything is connected correctly.

LINUX OPERATING SYSTEM

eth0 eth1 eth2 eth3 ethN

bond0

The Essentials of Linux Network Administration 12

In Summary
You just learned about network interfaces, DHCP, DNS, IP address configuration, interface bonding,
and more. Whether you need to configure your figure Linux host or you need to troubleshoot a Linux
networking issue on the first day of your new job, you won’t be able to accomplish either until you’ve
learned how to identify network interfaces, check their status, and reset them when needed. After
reading this paper, you should know the essentials of Linux network administration.

Last updated: December 2017
Copyright 2017 ActualTech Media; not responsible for errors or omissions

 Linux network bonding modes
Linux currently supports the following bond modes:

• balance-rr. The default, round-robin bonding, which provides load balancing and fault tolerance

• active-backup. Provides fault tolerance whereby only one slave can be active at a time and, if it fails, the other
slave takes over

• balance-xor. Provides fault tolerance and load balancing by transmitting based on hash

• broadcast. Provides fault tolerance by transmitting everything on all slave interfaces

• 802.3ad. IEEE 802.3ad standard for dynamic link aggregation creates aggregation groups for links that share the
same speed and duplex in order to provide for fault tolerance and load balancing. 802.3ad is one of the most
common types of bonding. 802.3ad uses LACP to communicate with the other side of the bond.

• balance-tlb. Adaptive transmit load balancing that doesn’t require any special switch support

• balance-alb. Adaptive load balancing that doesn’t require any special switch support due to its use of ARP
negotiation

The most common modes are active-backup and 802.3ad.

