

Linux
Networking 101

Inside this Guide:
• Discover how Linux continues its march

toward world domination
• Learn basic Linux administration tips
• See how easy it can be to build your entire

network on a Linux foundation
• Find out how Cumulus Linux is your ticket to

networking freedom
David M. Davis
ActualTech Media

Guide to…®

The

Gorilla

Helping You Navigate
The Technology Jungle!

www.actualtechmedia.com

In Partnership With

 The Gorilla Guide To…

Linux Networking 101

Author
David M. Davis, ActualTech Media

Editors
Hilary Kirchner, Dream Write Creative, LLC

Christina Guthrie, Guthrie Writing & Editorial, LLC
Madison Emery, Cumulus Networks

Layout and Design
Scott D. Lowe, ActualTech Media

Copyright © 2017 by ActualTech Media. All rights reserved. No portion
of this book may be reproduced or used in any manner without the
express written permission of the publisher except for the use of brief
quotations. The information provided within this eBook is for general
informational purposes only. While we try to keep the information up-
to-date and correct, there are no representations or warranties, express
or implied, about the completeness, accuracy, reliability, suitability or
availability with respect to the information, products, services, or
related graphics contained in this book for any purpose. Any use of this
information is at your own risk.

ActualTech Media
Okatie Village Ste 103-157

Bluffton, SC 29909
www.actualtechmedia.com

 Entering the Jungle

Introduction: Six Reasons
You Need to Learn Linux ... 7	

1. Linux is the future .. 9

2. Linux is on everything .. 9

3. Linux is adaptable ... 10

4. Linux has a strong community and ecosystem 10

5. Linux is fun!.. 10

6. Linux is open-source and sometimes free 10

Chapter 1: What Is Linux? ... 12	
The History of Linux .. 13

What Is an Operating System? .. 14

The Components that Comprise the Linux Operating System 15

What Is a Distribution? ... 16

Understanding User Space vs. Kernel Space 16

Benefits of Using Linux .. 18

How Is Linux Used in the Enterprise? .. 21

Summary .. 22

Chapter 2: Basics of
Linux Administration... 23	

Where Do I Get Linux? ... 23

How Do I Log In to Linux?... 24

How Do I Know What Type of Linux I Am Using? 26

Where Do I Find Things?.. 27

Where Are the Applications, and How Do I Run Them? 31

How Do I Install Applications? ... 33

Entering the Jungle iv

Linux Processes, Programs, and Services .. 37

Importance of Linux Log Files ... 39

Users and Superusers .. 40

Files and Permissions .. 42

Summary .. 44

Chapter 3: Basics of
Linux Network Administration .. 45	

Understanding Linux Network Interfaces 45

MAC Addresses .. 48

IP Addressing.. 49

DHCP ... 51

DNS .. 53

Network Statistics and Counters .. 55

How to Configure Network Interfaces ... 57

Network Interface Bonding ... 60

Summary .. 63

Chapter 4: Understanding
Linux Internetworking ... 64	

Layer 2 vs. Layer 3 Internetworking ... 66

Layer 2 Internetworking on Linux Systems 68

Bridging .. 68

Spanning Tree ... 70

Layer 3 Internetworking View on Linux Systems 73

Neighbor Table ... 73

IP Routing ... 74

Virtual LANs (VLANs) ... 76

Overlay Networks with VXLAN ... 79

Summary .. 82

Entering the Jungle v

Chapter 5: Cumulus Linux ... 83	
Network Command Line Utility (NCLU)...................................... 85

Building a Better Bridge ... 87

Two Links Are Better Than One ... 88

IP Fabrics Are Easy ... 90

BGP EVPN—L3 Network Virtualization for Network Engineers .. 92

Next Steps .. 95	
Your Cumulus Linux Action Plan .. 95

 Callouts Used in This Book

The Gorilla is the professorial sort
that enjoys helping people learn. In
the Schoolhouse callout, you’ll gain

insight into topics that may be
outside the main subject but that are

still important.

This is a special place where readers
can learn a bit more about ancillary

topics presented in the book.

When we have a great thought, we
express them through a series of
grunts in the Bright Idea section.

Takes readers into the deep, dark
depths of a particular topic.

 Icons Used in This Book

Definition. Defines a word, phrase, or
concept.

Knowledge Check. Tests your knowledge of
what you’ve read.

Pay attention. We want to make sure you see
this!

GPS. We’ll help you navigate your knowledge
to the right place.

Watch out! Make sure you read this so you
don’t make a critical error!

 Introduction

Modern data centers are vastly different from legacy ones, and with
good reason. In the past, companies typically supported a handful of
critical monolithic applications, and the network was put in place
primarily to support just those applications. Once installed, the network
was left mostly untouched in many organizations. It consisted of
dedicated hardware-based routers and switches that, for the times,
performed their tasks of routing and switching packets quite well. The
routers and switches favored by many enterprises typically came from
one of the “big 3” networking vendors, but their products generally
included costly appliances made up of custom hardware and highly
proprietary software. That network gear was so specialized that an entire
ecosystem sprang up around it to provide training, education,
certification, consulting, software and support maintenance, and more.

Over time, the data center landscape has changed — and for the better,
particularly given that the application landscape has also morphed into
something radically different from what was seen in the past. The
number of business-critical applications is on the rise, and, unlike their
older stay-at-home cousins, modern applications are distributed
between on-premises infrastructure, between partner networks, and
across the public cloud. End user and company data moves around the
globe at light speed, and it’s happening constantly. New applications
are being built today and torn down tomorrow in favor of even newer
applications. Change is happening fast, and the network is adapting to
support these changes.

Thankfully, the specialized hardware that characterized legacy data
centers isn’t so necessary anymore. Today, networking needs are being
met using industry-standard switching/routing silicon, off-the-shelf
hardware, Intel CPUs, and the Linux operating system. This

Introduction 9

combination makes networking far more affordable, more scalable,
easier to learn, and more adaptable to the constantly changing needs of
the business. After all, the network’s sole purpose is to connect the users
with their applications and data, so it should do it as reliably, securely,
efficiently, and affordably as possible.

The key piece of the previous paragraph and the focus of this book is
this: Linux networking is the future for almost every use case. But to
leverage a Linux-based networking solution, you need to understand
Linux, and that’s where this book comes in.

Definitions Abound!

If you don’t know what some of these words mean, don’t worry!
We’ll define them during your Linux 101 journey. By the end of this
book, you’ll be using these phrases in casual conversation!

Six Reasons You Need to Learn Linux
What if you don’t know Linux and are asking yourself, “Is this book
really worth my time?” The short answer is a resounding YES, but to
back that up, let me give you six good reasons why you should invest
some of your time to learn Linux.

1. Linux is the future
Although Linux has been around for over 25 years, it has enjoyed a
continuous rise in business-critical usage, and many see Linux as being
the most popular operating system for the future. The reason as to why
Linux is the lingua franca of the modern data center relates to the points
below.

2. Linux is on everything
Linux runs more than two-thirds of the servers on the Internet, all
Android phones, most consumer network gear, such as NetGear and
Linksys devices, 99% of the top supercomputers in the world, many
Internet of Things (IoT) devices, Tesla cars, and even PlayStation
gaming consoles.

Introduction 10

3. Linux is adaptable
The very reason everything is on Linux is because it’s such an adaptable
operating system. Thanks to Linux’s modularity and open-source
nature, you can choose the pieces you need for your product or service
and develop any pieces that may not already exist. You can install tiny
versions of Linux for specialized use cases (such as operating water
sprinklers in the gorilla exhibit at the zoo), modify it to work on
appliances that route packets across a large enterprise network, or use it
as your desktop operating system. Your choices are practically endless.

4. Linux has a strong community and ecosystem
Linux has been so successful mainly because of the strong community
and ecosystem that surrounds it. There are Linux contributors
(developers who write code to make the product better); Linux forums
and communities; Linux instructors; Linux training options; Linux
blogs; Linux third-party tools; Linux distributions; Linux conferences;
and even Linux books such as this one!

5. Linux is fun!
Linux is a lot of fun because you can do just about anything with it.
Linux is commonly used in Internet of Things (IoT) projects; it runs on
tiny Raspberry Pi computers commonly used by hobbyists, and it even
makes a great operating system on your laptop or desktop computer.
More examples of the many uses of Linux are found throughout the
book.

6. Linux is open-source and sometimes free
Linux is open-source, meaning that the original source code is made
freely available and may be redistributed and modified. That said, there
are paid and fully supported commercial editions available, too. The
open nature of Linux has made it the adaptable OS of the future,
allowing it to run on everything, and has resulted in the creation of a
strong ecosystem.

Introduction 11

Ready to start learning Linux?

Head to the first chapter in this Gorilla Guide and find out the answer
to the burning question: What is Linux?

 Chapter 1

What Is Linux?

As you get started learning about Linux, you’ll likely have many of the
same questions that thousands of other people have had since the
beginning of Linux time. For that reason, we’ll start this chapter by
answering the most common questions about Linux.

By reading this chapter, you’ll find the answers to these questions:

1. What is an operating system?

2. What makes up
the Linux OS?

3. What makes
Linux
unique?

4. What are the b
enefits of using
Linux?

Figure 1-1. Linus Torvalds,
principal author of the
Linux kernel, on
August 25, 1991, when he
announced his new Linux
kernel.

“Hello everybody out there
using minix I’m doing a (free)
operating system (just a
hobby, won’t be big and
professional like gnu)…”

Photo by Krd (Own work) [CC BY-SA 3.0
(https://creativecommons.org/licenses/by-sa/3.0) or CC

BY-SA 4.0 (https://creativecommons.org/licenses/by-
sa/4.0)], via Wikimedia Commons

What Is Linux? 13

The History of Linux
Before we dive into Linux, let’s first take a step back in history. The
creation of Linux starts with another operating system known as UNIX,
which was first released in 1971. In 1983, the GNU Project (which stood
for “GNU’s not Unix”) was started to create a complete UNIX-
compatible operating system. Efforts stalled, and the project was missing
a kernel. Around 1987, a UNIX-like operating system for students was
released called MINIX, but its licensing prevented it from being
distributed freely. Linus Torvalds (Figure 1-1) at the University of
Helsinki in Finland was frustrated by the licensing of MINIX and began
working on his own operating system kernel. His kernel, released in
1991, when combined with the GNU applications and open-source
licensing, became the Linux operating system we know today.

Since then, thousands of developers from around the world have
contributed to enhancing the Linux kernel as well as the many pieces of
software that make up the many different Linux distributions. Those
developers include volunteers as well as developers from commercial
companies. Today, the nonprofit Linux Foundation helps to create
standards, awareness, and advancements across many different Linux
projects.

 What Is a Kernel, and What Does It Do?
The kernel is the special piece of the operating system
that controls the CPU hardware, allocates
memory, accesses data, schedules processes, runs
the applications, and protects them from each
other. It is the first program loaded on the computer when the computer
starts up. The most critical pieces of code in the kernel are loaded into
protected areas of memory so that they can't be overwritten by other
applications running in the operating system.

What Is Linux? 14

What Is an Operating System?
The short answer is that an operating system, or OS, is software that you
load on your hardware to make it “do things.” Without an operating
system, most hardware is useless. For example, you might have a Dell
computer that runs the Windows 10 operating system from which you
run your applications. You might have an iPhone that runs the iOS
operating system. You may also have an Apple MacBook that runs the
Apple macOS operating system. The operating systems on these
hardware platforms are what enable them to run applications, as shown
in Figure 1-2.

Figure 1-2. How an operating system works with hardware and
applications

OPERATING SYSTEM

APPLICATIONS

KERNEL

LIBRARIES SYSTEM
DAEMONS SHELLS TOOLS

HARDWARE

What Is Linux? 15

The Components that Comprise the Linux
Operating System
Linux is an open-source OS that can be installed on a variety of different
types of hardware to allow you to develop software, run applications,
and more. At the heart of Linux is the kernel. Linux was developed in C
and assembly language to run on i386 personal computers, but it has
since been ported to more hardware than just about any other operating
system in history. Today, Linux is the most installed operating system
globally. In fact, the Space X Falcon 9 rocket and the International Space
Station both use Linux!

Linux is typically administered from a command line interface (CLI),
also known as a shell. Besides the kernel, which manages the hardware
and software processes, Linux distributions include a collection of Linux
software, such as device drivers for accessing and controlling hardware,
shared libraries, applications, and system daemons, which run the in
background and respond to network requests. Figure 1-3 shows an
example of what a common Linux distribution might look like.
Numerous programming languages are available for Linux, as well as
more than 70,000 different applications. Applications are installed from
packages, which contain the application itself and metadata about the
application.

Definition: Metadata
Metadata is data about data. In essence, metadata describes the

kind of information that an underlying data set will store. Take, for
instance, a file system on a computer. When you view a directory
listing, you see the file name, file size, create date, last modified date,
and so forth. These are basic examples of metadata associated with
each object in that directory.

What Is Linux? 16

What Is a Distribution?
Often called a “distro,” a Linux distribution is the combination of specific
versions of the Linux kernel with other libraries, system daemons,
development tools, applications, packaging, and life-cycle management
tools that are compatible with each other and tested for interoperability.
The most common way that people acquire Linux today is by
downloading one of the many different Linux distributions.
Distributions are available not just for servers, desktop, and laptop
computers, but also for a huge variety of more specialized devices that
run Linux. Examples of Linux distributions are Ubuntu, Debian, Fedora,
openSUSE, and Cumulus Linux.

Understanding User Space vs. Kernel
Space
Operating systems all execute their kernel in protected and restricted
memory that is called kernel space (see Figure 1-4) to prevent the kernel
from terminating and crashing the system.

 What is a Linux Daemon?
A system daemon in Linux is typically a background
system process that awaits a specific set of
conditions before jumping into action. For
example, your Linux system may have a daemon
called sshd, which stands for Secure Shell daemon.
This system daemon runs in the background and accepts authorized
incoming requests to log into the Linux host. System daemons do not
interact with users and are not typically under the direct control of
users, but rather of the system itself.

What Is Linux? 17

Figure 1-3. Example of a common Linux distribution

When a user runs an application or tool, that application or tool
executes in what is called user space. This distinction is critical.
Applications can come from a variety of sources, may be poorly
developed, or originate unknown sources. By running these
applications separate from kernel space, they can’t tamper with the
kernel resources and cause the system to panic (crash).

All applications, even system daemon processes that perform critical
operating system functions, must make what is called a “system call” to
the kernel in the kernel space in order to access system resources such
as memory or network devices. Every modern multi-user operating
system has some type of user space versus kernel space design, which is
intended to keep it secure, high-performing, and reliable.

In short, the separation between user space and kernel space is made to
ensure that Linux is as reliable and secure an operating system as
possible.

LIBRARIES SYSTEM
DAEMONS SHELLS TOOLS

LINUX KERNEL

 SCHEDULER, DRIVERS, SECURITY, NETWORKING

APPLICATIONS

 DATABASE, WEB SERVER, NETWORK MONITOR, ETC.

What Is Linux? 18

Figure 1-4. User Space and Kernel Space in the Linux kernel

Benefits of Using Linux
Besides the fact that Linux is a great operating system, is continually
being enhanced, and has a huge community following, Linux has
gained such tremendous popularity because there are so many different
benefits to using it. Some of these benefits include:

• Consistent operating model. No matter what version or
distribution of Linux you use, whether you’re on a
supercomputer or a tiny embedded device, the general
operation of Linux is the same no matter where you go. What
this means is that, with some exceptions, the command line
syntax is similar, process management is similar, basic network
administration is similar, and applications can be (relatively)
easily ported between distributions. The end result of this
consistent operating model is a cost savings generated by greater
staff efficiency and flexibility.

 USER
SPACE LIBRARIES SYSTEM

DAEMONS SHELLS TOOLS

SHARED LIBRARIES

USER APPLICATIONS (DBs, WEB, NET TOOLS, ETC.)

 KERNEL
SPACE

SCHEDULER, DRIVERS, SECURITY, NETWORKING

LINUX KERNEL

What Is Linux? 19

• Scalability. At this point, you already know that Linux is
eminently scalable and is able to run on everything from
wristwatches to supercomputers to globally distributed
computing clusters. Of course, the benefit of this scalability isn't
just the device mix, but also that its basic functionality —
command line tools, configuration, automation, and code-
compatibility — remains the same no matter where you're
using it.

• Open-source and community optimized. With Linux’s
open-source, freely available nature, you might be concerned
about future enhancements, bug fixes, and support.
Fortunately, you can put those worries aside. If you look at the
Linux kernel alone, with its 22 million lines of code, you’ll find
a strong community developing it behind the scenes. In 2016,
one report said that over 5,000 individual developers
representing 500 different corporations around the world
contributed to enhancements in the Linux kernel, not to
mention all the other surrounding applications and services. A
staggering 13,500 developers from more than 1,300 companies
have contributed to the Linux kernel since 2005. You might
wonder why commercial entities contribute code to Linux.
While many open-source advocates see the open-source nature
of Linux as purely idealistic, commercial contribution of code
is actually a strategic activity. In this sense, the for-profit
companies who are dependent on Linux contribute their
changes to the core to ensure that those changes carry forward
into future distributions without having to maintain them
indefinitely.

What Is Linux? 20

• Full function networking. Over the years, Linux has built up
a strong set of networking capabilities, including networking
tools for providing and managing routing, bridging, DNS,
DHCP, network troubleshooting, virtual networking, and
network monitoring.

• Package management. The Linux package management
system allows you to easily install new services and applications
with just a few simple commands.

 Linux Package Management
A Linux package management system is a tool that
helps Linux administrators install and manage
applications and extensions for the Linux
operating system. Each Linux distribution
carries its own package management capabilities. A Linux package
includes all the bits necessary for a new application or service to
operate. The package management system can also help an
administrator address any dependencies that a package may have. A
dependency is a software package necessary for another package to
operate. By layering these dependencies, newly developed packages
can then leverage the work of others without having to constantly
reinvent the wheel. However, maintaining dependencies can be
difficult, particularly as you continue to add packages. A good package
management system will ensure that all dependencies are handled at
the same time that you install new packages.

You will learn more about package management later in this book.

What Is Linux? 21

How Is Linux Used in the Enterprise?
Many modern ideas in data center computing have Linux
underpinnings. Here are just a few examples:

• Automation and orchestration. Automation is used to perform
a common task in a programmatic/scripted way, whereas
orchestration is used to automate tasks across multiple systems
in a data center. Linux is being used to automate and
orchestrate just about every process in the enterprise data
center.

• Server virtualization. Server virtualization is the ability to run a
full operating system on top of an existing bare metal server.
These virtual machines (VMs) can be used to increase server
utilization, simplify server testing, or lower the cost of server
redundancy. The software that allows VMs to function is called
a hypervisor. Linux includes an excellent hypervisor called KVM.

• Private cloud. Another open-source project called OpenStack,
which also runs on Linux, has become a leading cloud
management platform for creating a private cloud. With private
cloud, companies can leverage many of the same advantages of
public cloud (scalability, self-service, multi-tenancy, and more)
while running their own IT infrastructure on-premises.

• Big data. More and more companies are having to deal with
exponentially increasing amounts of data in their data center,
and because Linux offers such scalability and performance, it
has become the go-to operating system for crunching big data
via applications like Hadoop. Even Microsoft recently
announced a big data solution based on Linux.

What Is Linux? 22

• Containers. Linux can also be used to run containerized
applications, such as Docker containers, which are being used
more and more by many companies. In fact, Linux is the
foundation of the modern container movement; all container
packaging and orchestration relies on Linux namespace and
isolation mechanisms in order to operate.

Knowledge Check
Answer the following questions to check your knowledge

concerning the basics of Linux:

 • What is the Linux kernel?

 • What is an operating system?

 • What’s the difference between user space and kernel space?

Summary
In this chapter, you learned what Linux is, where it came from, how it’s
being used, and how powerful it is. With that knowledge, it’s time to get
started using Linux yourself! In the next chapter, you will learn where
to download a Linux distribution, discover the basics of Linux
administration, including how the Linux file system works, how to
manage processes, how to log into Linux, and how to deploy new
packages.

Read on to continue your quest to learn Linux!

 Chapter 2

Basics of Linux
Administration

Even though this chapter is titled “Basics of Linux Administration,” you
should know that this chapter is meant for anyone getting started with
Linux, whether or not you plan to be a Linux administrator in the
future. You can consider this chapter a “getting started with Linux”
resource.

Here’s what you’ll learn:

• Where you can get Linux

• The basics of the Linux file system

• How Linux processes work

Let’s start with the most basic of Linux questions.

Where Do I Get Linux?
To get started with Linux, you need to download a Linux distribution,
such as RedHat Enterprise Linux, Ubuntu, Debian, Fedora, openSUSE,
CentOS, or Cumulus Linux. You want to make sure that you obtain a
Linux distribution that is compatible with your hardware. For example,
you might select a 32-bit i386 image or a 64-bit amd64 image.

For example, if you want to start with the Debian distribution, you can
download an ISO-formatted image that you would use to install Debian
Linux from https://www.debian.org/distrib/

Basics of Linux Administration 24

While some people will want to run Linux directly on a physical server,
desktop, or laptop, many people start learning Linux for the first time
by running it inside of a virtual machine. With a VM option, you can
run Linux inside your existing Microsoft Windows or Apple macOS
operating system using virtualization tools such as VMware
Workstation or VMware Fusion, both of which both offer a free, limited-
time evaluation license. You can also go with a free product from Oracle
called VirtualBox. Another option is to run Linux as a VM in the public
cloud via a provider such as Amazon Web Services or Microsoft Azure.

In this book, I’ll skip the steps on how to install Linux because you won’t
have to perform the typical installation if you use a live image. Instead,
we will focus on building a skill set on the administrative tasks needed
to understand and navigate Linux.

How Do I Log In to Linux?
Because most Linux administration is done using a CLI, you log in to
Linux at either the console of the Linux host machine or by remotely
connecting to the Linux server over a network. For a new installation,
you typically log in to the console to install system packages and then
set up initial users with passwords and network access.

Most Linux servers are set up to allow users to connect via the network
using the Secure Shell (SSH), an encrypted communications protocol.

 CLI vs. GUI
Linux can be administered through a
graphical user interface (GUI) or
command line interface (CLI). Most direct
uses of Linux by consumers/individuals are
done with a GUI, as with Android phone users or Linux desktop
users. Most Linux servers are administered through the CLI, as
administrators typically find it to be more efficient. Throughout
this book, I’ll be using the CLI for examples.

Basics of Linux Administration 25

SSH is a secure alternative to the insecure telnet that was used in the past.
With SSH, your SSH client connects to the SSH server running on the
Linux host where you log in with a username and password. We’ll talk
more about user administration later in this chapter.

Here’s how establishing a connection might work from a system that
already has an SSH client (such as macOS in this case) connecting to a
Linux host (Cumulus Linux in this case) over the network:

macos1:~ david$ ssh cumulus@192.168.1.107

cumulus@192.168.1.107's password: ********

Welcome to Cumulus VX (TM)

Cumulus VX (TM) is a community supported virtual
appliance designed for experiencing, testing, and
prototyping Cumulus Networks' latest technology.

For any questions or technical support, visit our
community site at: http://community.cumulusnetworks.com

The registered trademark Linux ® is used pursuant to a
sublicense from LMI, the exclusive licensee of

As you can see, with SSH, you connect using the command ssh,
followed by the Username, an @ symbol, and then the Hostname or IP
Address of the Linux host to which you are trying to connect. You will
be prompted for your password to log in. In the example above, the
password is required, but is not echoed and therefore not shown.

 Get an SSH client!
SSH clients are all over the place! If you’re a
Windows user, one of the most popular
clients is PuTTY, which is available for
download from www.putty.org. If you’re a
Mac user, you can just use the Terminal
application that is already built into macOS. If you’re on a
mobile device, head to your device’s application store and look around.
You’ll find a multitude of options.

Basics of Linux Administration 26

How Do I Know What Type of Linux I Am
Using?
Because there are so many different types of Linux, you want to be sure
you know what distribution and version you are using (for the sake of
searching the right documentation on the Internet, if nothing else).
Keep in mind a couple different commands to identify your Linux
version.

The uname command shows the basic type of operating system you are
using, like this:

david@debian:~$ uname -a

Linux debian 3.16.0-4-686-pae #1 SMP Debian 3.16.43-2
(2017-04-30) i686 GNU/Linux

And the hostnamectl command shows you the hostname of the Linux
server as well as other system information, like the machine ID,
virtualization hypervisor (if used), operating system, and Linux kernel
version. Here’s an example:

david@debian:~$ hostnamectl

Static hostname: debian

Icon name: computer-vm

 Where do usernames and passwords
come from?
You may be wondering where these usernames
and passwords come from. The “superuser”
username in Linux is called “root” because it is
the only user that can modify the root directory. During installation, the
root user is created, and you are able to select a password. Post-
installation, administrators can use the root user account and account
management commands to create new users (with associated passwords)
for normal user activities.

Basics of Linux Administration 27

Chassis: vm

Machine ID: 0eb625ef6e084c9181b9db9c6381d8ff

Boot ID: 8a3ef6ecdfcf4218a6102b613e41f9ee

Virtualization: vmware

Operating System: Debian GNU/Linux 8 (jessie)

Kernel: Linux 3.16.0-4-686-pae

Architecture: x86

As shown above, this host is running Linux. More specifically, the host
is running Debian GNU Linux version 8 (codename jessie) with a Linux
3.16 version kernel on an x86 CPU architecture. Among other things,
you can also see that this Linux installation is running on a virtual
machine with VMware as the hypervisor. Cool, huh?

Where Do I Find Things?
An operating system has a file system that, similar to a filing cabinet,
allows you to store and retrieve data. Most file systems use the concept
of directories—also called folders—and files that are stored inside the
directories. Everything in Linux—even hardware—is represented in this
folder and file structure.

If you’re new to Linux, you might be wondering how the Linux file
system compares to something familiar like the Microsoft Windows file
system. In Windows, you may be used to drive letters (like the C: drive)
being used as the highest point of a storage volume. Linux represents
the highest level of the volume differently. The Linux file system can
span multiple physical drives, which are all a part of the same tree. The
highest point of the Linux file system is the “/,” or “root,” with all other
directories branching down the tree from there, as shown in Figure 2-1.

Basics of Linux Administration 28

Interaction with and navigation of the Linux file system is done up and
down the tree with commands such as:

• pwd. Display the directory you’re currently in (short for print
working directory)

• ls. List out files that are present in the folder

• cd. Change directory

• rm. Remove files

• mkdir and rmdir. Make and remove folders or directories,
respectively

Figure 2-1. The typical Linux file system

Let’s do a quick exercise. First, by using the pwd command, you can see
what directory I’m currently in.

david@debian:~$ pwd

/home/david

Next, to change to the root directory, you can use the cd command.

david@debian:~$ cd /

To get a simple list of files, you can use the ls command. This will
display a very concise list of the files and folders that exist in the current
directory.

/

bin dev home mnt root tmp var ….

boot etc lib proc sbin usr lost+found

bin lib sbin . ..

Basics of Linux Administration 29

david@debian:/$ ls

bin boot dev etc home initrd.img lib lost+found
media mnt opt proc root run sbin srv sys tmp
usr var vmlinuz

But, in most cases, you probably want more information than just a
simple list of files. Linux uses command line flags or switches to extend
what a command can do. For example, to list out all the files and folders
in the current directory, along with full details about each one, you
would type ls -la. This long listing format then shows you each file
and directory, as well as the permissions and access rights for each object
(we’ll cover file permissions later in this chapter), the name of the user
that owns the object (root), the name of the group that owns the object
(again, root), the file size, and the data and time that the object was last
modified. Here’s what this output looks like for the root folder on my
test system:

david@debian:/$ ls -la

total 88

drwxr-xr-x 21 root root 4096 May 15 11:50 .

drwxr-xr-x 21 root root 4096 May 15 11:50 ..

drwxr-xr-x 2 root root 4096 May 15 12:11 bin

drwxr-xr-x 3 root root 4096 May 15 15:53 boot

drwxr-xr-x 18 root root 3200 Jul 14 01:52 dev

drwxr-xr-x 134 root root 12288 Jul 14 01:55 etc

drwxr-xr-x 3 root root 4096 May 15 15:53 home

lrwxrwxrwx 1 root root 33 May 15 11:50 initrd.img -
> /boot/initrd.img-3.16.0-4-686-pae

drwxr-xr-x 19 root root 4096 May 17 00:41 lib

drwx------ 2 root root 16384 May 15 11:49 lost+found

drwxr-xr-x 3 root root 4096 May 15 11:49 media

drwxr-xr-x 2 root root 4096 May 15 11:49 mnt

drwxr-xr-x 2 root root 4096 May 15 11:49 opt

dr-xr-xr-x 150 root root 0 Jul 14 01:52 proc

drwx------ 2 root root 4096 May 16 14:29 root

drwxr-xr-x 23 root root 880 Jul 14 01:57 run

Basics of Linux Administration 30

drwxr-xr-x 2 root root 4096 May 17 00:41 sbin

drwxr-xr-x 2 root root 4096 May 15 11:49 srv

dr-xr-xr-x 13 root root 0 Jul 14 01:52 sys

drwxrwxrwt 13 root root 4096 Jul 14 02:02 tmp

drwxr-xr-x 10 root root 4096 May 15 11:49 usr

drwxr-xr-x 12 root root 4096 May 15 12:12 var

lrwxrwxrwx 1 root root 29 May 15 11:50 vmlinuz ->
boot/vmlinuz-3.16.0-4-686-pae

Fun with the file system
The image shown in Figure 2-1 also shows you
some of the most important directories in the
Linux file system, including:

• /bin, /sbin, /usr/bin, and /usr/sbin. Where
executable programs are stored.

• /dev. Where files representing hardware devices are stored. For
example, if your Linux system had a floppy drive device, there
would be a file named fd0 in the dev folder (/dev/fd0).

• /etc. Where configuration files are stored.

• /home. Where user home directories are stored, one for each
user.

• /var. Where variable-length files, like log files, are stored.

• Of course, not all applications play nice, and not all Linux
administrators are consistent. This is just where stuff is supposed
to go, but things occasionally end up where they don’t belong.
While there may be some differences between Linux
distributions when it comes to where things are located, in
general, the baseline directory structure and usage of it should
be the same because this is defined by the file system Hierarchy
Standard (FHS). For more information on the FHS see:
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

Basics of Linux Administration 31

Where Are the Applications, and How Do I
Run Them?
One of the most common questions from new Linux users who are at a
command line is, “What are the applications available to me, and how
do I run them?” As mentioned previously, most user tools are found in
the directories /bin, /usr/bin and system tools are typically located in
/sbin and /usr/sbin. For example, tools like cp (to copy a file), ps (for
process status), and cat (to display the contents of a file) are all found
in /bin. The great thing is you don’t need to go into any of these
directories to run these types of tools because these directories are
included in your $PATH variable by default.

The $PATH variable includes all the locations that are searched when
you run a command in the CLI. Because the /bin directories are in your
path, when you execute the name of any of these sample tools, they will
be found. Here’s what your $PATH variable might look like (shown by
using the echo command to show the $PATH variable):

david@debian:~$ echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games

You can execute applications or commands simply by typing the name
of the command if application’s location is in your $PATH. If that
application is not in one of the folders listed in your $PATH, you have
to do one of the following:

• Navigate to the folder where the application is found and tell
Linux that you want to execute the application in that folder,
like this:

david@debian:~$ cd /opt/app/bin

david@debian:~$./myapp

(the “dot slash” refers to the current folder, with the full
command saying “in the current directory, execute ‘my app’”)

Basics of Linux Administration 32

• Specify the full path of the application when you execute it, like
this:

david@debian:~$ /opt/app/bin/myapp

A useful command in determining which command will be run and
from what directory it will be run is the which command. Use which
with the executable of a command afterward to get a list of the location
of the command that will be executed.

Besides the standard types of Linux tools, there are tens of thousands of
applications you can install into Linux in just a few commands. Linux
distributions offer package managers that help you search online package
or application repositories and then download and install just about any
application you might want. Package managers also make it easy to
update your packages to get the latest version. Examples of package
managers are apt, dpkg, rpm, and yum. The package manager that is
available to you will be determined by the Linux distribution that you
have installed. Linux running on Android mobile devices also has its
own package manager (similar to the Apple “App Store”).

On Debian and Ubuntu systems, you can run
apt list --installed and get a list of the packages that are already
installed, like this:

david@debian:~$ apt list --installed

accountsservice/stable,now 0.6.37-3+b1 i386
[installed,automatic]

acl/stable,now 2.2.52-2 i386 [installed]

acpi/stable,now 1.7-1 i386 [installed]

acpi-support-base/stable,now 0.142-6 all [installed]

(Output truncated)

Any apt list command will result in very long output, so you may
consider piping it to the “less” pager tool, like this:
apt list | less. This will show you the output page by page and
allow you to press the space bar after each page to see the next page.

Basics of Linux Administration 33

How Do I Install Applications?
Before you start installing new services, you should typically ensure that
you have the list of the most recent versions of available packages from
the update repository. This command doesn’t actually update any
software, but it does make sure you’re looking at a list of currently
available package versions. You can update the list of packages that are
available to you with apt update, like this:

david@debian:/opt$ sudo apt update

Ign http://ftp.us.debian.org jessie InRelease

Get:1 http://ftp.us.debian.org jessie-updates InRelease
[145 kB]

Get:2 http://security.debian.org jessie/updates
InRelease [63.1 kB]

Get:3 http://ftp.us.debian.org jessie Release.gpg [2,373
B]

(output truncated)

 What is piping?
You can direct the output of a command to another
command. Say you want to get a directory listing
that doesn’t scroll off the bottom of the screen.
You can use the less paging tool by piping the
output of ls -al to less. In this case, type ls -al | less at the
command prompt and, when the screen fills up, you are prompted to
hit a key to view the second page of the directory. Understanding the
pipe character “|” and its usage is important as you begin your Linux
journey. In fact, as you get deeper into Linux territory, you will find that
the ability to pipe command output to other commands is invaluable
when it comes to creating scripts to automate certain functionality.

Basics of Linux Administration 34

Then, install a package with apt install, like this:

david@debian:~$ sudo apt install apache2

Reading package lists... Done

Building dependency tree

Reading state information... Done

Suggested packages:

 apache2-doc apache2-suexec-pristine apache2-suexec-
custom

The following NEW packages will be installed:

 apache2

0 upgraded, 1 newly installed, 0 to remove and 0 not
upgraded.

Need to get 0 B/208 kB of archives.

After this operation, 361 kB of additional disk space
will be used.

Selecting previously unselected package apache2.

(Reading database ... 137657 files and directories
currently installed.)

Preparing to unpack .../apache2_2.4.10-
10+deb8u8_i386.deb ...

Unpacking apache2 (2.4.10-10+deb8u8) ...

Processing triggers for man-db (2.7.0.2-5) ...

Processing triggers for systemd (215-17+deb8u7) ...

Setting up apache2 (2.4.10-10+deb8u8) ...

Important!
For commands requiring elevated privileges, we’ll be

prepending those commands with the sudo command, which will be
discussed later in this book. For now, you just need to understand that
sudo allows you to run the command as an administrator.

In the above example, we used apt install to install the Apache web
server. To verify that a package is installed correctly (and that you
installed what you think you installed), you can use apt show.

Basics of Linux Administration 35

david@debian:~$ apt show apache2

Package: apache2

Version: 2.4.10-10+deb8u8

Installed-Size: 361 kB

Maintainer: Debian Apache Maintainers <debian-
apache@lists.debian.org>

Replaces: apache2.2-common, libapache2-mod-macro (<<
1:2.4.6-1~)

Provides: httpd, httpd-cgi

Depends: lsb-base, procps, perl, mime-support, apache2-
bin (= 2.4.10-10+deb8u8), apache2-utils (>= 2.4),
apache2-data (= 2.4.10-10+deb8u8)

Pre-Depends: dpkg (>= 1.17.14)

Recommends: ssl-cert

Suggests: www-browser, apache2-doc, apache2-suexec-
pristine | apache2-suexec-custom

Conflicts: apache2.2-common (<< 2.3~)

Breaks: libapache2-mod-macro (<< 1:2.4.6-1~)

Homepage: http://httpd.apache.org/

Tag: role::metapackage, suite::apache

Section: httpd

Priority: optional

Download-Size: 208 kB

APT-Manual-Installed: yes

APT-Sources: http://ftp.us.debian.org/debian/
jessie/main i386 Packages

Description: Apache HTTP Server

 The Apache HTTP Server Project's goal is to build a
secure, efficient and

 extensible HTTP server as standards-compliant open-
source software. The

 result has long been the number one web server on the
Internet.

 Installing this package results in a full installation,
including the

 configuration files, init scripts and support scripts.

Basics of Linux Administration 36

You can see that the Apache 2.4.10 web server was installed, and it says
that this package results in a full installation; however, it also suggests
that we install the apache-doc (for documentation) and www-browser
(to act as our HTTP client/ web browser) packages.

 Getting help
Linux commands can, at times, be confusing and can
become complex. In Linux, help is always
available!

Use the man command (shorthand for “manual”)
to provide detailed documentation for just about every Linux
command. For example:

david@Debian$ man ls

NAME

 ls - list directory contents

SYNOPSIS

 ls [OPTION]... [FILE]...

DESCRIPTION

 List information about the FILEs (the current
directory by default). Sort entries alphabetically if
none of

 -cftuvSUX nor --sort is specified.

 Mandatory arguments to long options are mandatory
for short options too.

 -a, --all

 do not ignore entries starting with .

 -A, --almost-all

 do not list implied . and ..

(output truncated)

Depending on the command, other options to get help are to
append “-h” or just “help” after the command.

Basics of Linux Administration 37

Linux Processes, Programs, and Services
When you start a program, in Linux, it will run interactively by default,
which means you can interact with it via your terminal session with all
input and output presented to you, the user. However, you can also run
programs in the background (often called “services”) so that you don’t
see their output and can still use your command prompt to continue
your work (and continue running the service even when you are logged
out). This can also be useful if you have a program that will take some
time to process; you can just put it in the background and be alerted
when it is completed.

But how do you know if it’s still running, and how do you get a list of
every process running on your system? The ps command displays a list
of running processes in Linux. This command is often coupled with the
-ef flag to show every process in the long list format shown below. You’ll
see right at the top that “/sbin/init” is PID (process identifier) #1, and it’s
owned by root (the superuser—more on the root user later in this
chapter).

david@debian:~$ ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 01:52 ? 00:00:01 /sbin/init

root 2 0 0 01:52 ? 00:00:00 [kthreadd]

root 3 2 0 01:52 ? 00:00:00 [ksoftirqd/0]

root 5 2 0 01:52 ? 00:00:00 [kworker/0:0H]

(Output truncated)

You may want to pipe the ps -ef command to less, like
ps -ef | less, to see the output page by page.

If you just enter ps by itself, you’ll see only your running processes, like
this:

Basics of Linux Administration 38

david@debian:~$ ps

 PID TTY TIME CMD

 1679 pts/1 00:00:00 bash

 1784 pts/1 00:00:00 ps

In this case, you can see that this user is running the bash shell, which
is providing the command prompt and the ps command to show what
processes are running (also the command that produced this output).

Linux uses the concept of system services, which are long-running
programs that are run in the background and typically provide some
service on behalf of system users. You can start, stop, and check the status
of services with the command systemctl, like this:

david@debian:/opt$ systemctl status

● debian

 State: running

 Jobs: 0 queued

 Failed: 0 units

 Since: Tue 2017-08-08 20:49:02 EDT; 1h 37min ago

 CGroup: /

 ├─1 /sbin/init

 ├─system.slice

 │ ├─avahi-daemon.service

 │ │ ├─469 avahi-daemon: running
[debian.local

david@debian:/opt$

(Output truncated)

Service vs. Systemctl
There is currently a command transition happening, with the

service command being phased out in favor of the new systemctl
command. You may see references on websites to the older service
command. Be aware that the new systemctl will soon replace
service in all Linux distributions.

Basics of Linux Administration 39

Importance of Linux Log Files
To be an effective administrator of any type of Linux system, you need
to be able to find and search log files to determine the status of the
system, including finding any system and application errors. Although
applications can put their log file anywhere they like (such as placing
them in the application’s directory), most Linux system log files will be
found in /var/log.

If you go over to /var/log (with cd /var/log) and do a ls -l (to list
the files in long format), you’ll find that there are quite a few Linux
system log files.

david@debian:~$ cd /var/log

david@debian:/var/log$ ls -l

total 4924

-rw-r--r-- 1 root root 0 Jul 14 01:57 alternatives.log

-rw-r--r-- 1 root root 40586 May 15 12:12
alternatives.log.1

drwxr-xr-x 2 root root 4096 Jul 14 01:57 apt

-rw-r----- 1 root adm 1471 Jul 14 02:17 auth.log

-rw-r----- 1 root adm 24651 Jul 14 01:55 auth.log.1

-rw-rw---- 1 root utmp 0 Jul 14 01:57 btmp

-rw------- 1 root utmp 768 Jul 14 01:53 btmp.1

drwxr-xr-x 2 root root 4096 Jul 14 01:57 cups

(Output truncated)

The following are the most important system log files:

• syslog. Contains the centralized logging system, called syslog,
in which you’ll find messages related to the kernel, applications,
and more. If configured, this could be the centralized log file
for all Linux systems (or even all network devices) in your data
center.

• auth.log. Contains authentication failures and successes

• messages. Contains general system messages of all types

Basics of Linux Administration 40

A variety of different tools can be used to view and parse log files, such
as:

• cat. Display the contents of a file

• less. View a file with pagination and scrolling

• grep. Search for a string in a file where the usage is grep
PATTERN [FILE]

• head. See the first lines (head end) of a text file

• tail. View the last lines (tail end) of a text file. A common use
case for tail is to watch the status of a log file in real time with
the “-f” flag like tail -f /var/log/syslog

Even if you ignore the rest of the commands in the previous list, learn
to use grep. I’ll be using it later in this book.

Users and Superusers
Just as you might expect with any multi-user operating system, Linux
supports the concept of users with differing levels of access. By default,
you’ll log in as a common user and be able to view most of what’s
happening on the system, although you’re not allowed to view log files
as a standard unprivileged user. To be able to reconfigure the system or
view log files, you’ll need administrative rights. In Linux, these
administrative privileges are referred to as superuser privileges and are
equivalent to the root user, who has a user ID of 0 (zero).

Adding, Modifying, and Deleting User Accounts
It’s important to note that Linux user accounts can be added,

modified, and deleted with the commands adduser, moduser, and

deluser. To add, modify, or delete users, you must have the correct
privileges (which are usually the privileges of the root user).

Basics of Linux Administration 41

Take a look at this command sequence:

david@debian:/$ id

uid=1000(david) gid=1000(david)
groups=1000(david),24(cdrom),25(floppy),27(sudo),29(audi
o),30(dip),44(video),46(plugdev),108(netdev),110(lpadmin
),113(scanner),117(bluetooth)

david@debian:/$ whoami

david

david@debian:/$ sudo id

uid=0(root) gid=0(root) groups=0(root)

david@debian:/$

david@debian:/$ sudo whoami

root

Notice in the dialog above how the id command was used to see that
we were “uid” (user ID) 1000, and how the whoami command was used
to see that I am a user called “david.” From there, I used the sudo id
command to make sure I was the root user, and the sudo whoami
command verified that I had become root. You’ll note that the id
command proves that I have the uid of 0 (zero).

Here’s a real-world example. Suppose you’d like to view the latest system
logs from the Linux syslog file. Doing so isn’t possible with a regular
user account. To view the syslog file (using the tail command, in this
case), you must use the sudo command:

david@debian:~$ tail /var/log/syslog

tail: cannot open ‘/var/log/syslog’ for reading:
Permission denied

david@debian:~$ sudo tail /var/log/syslog

May 15 10:00:08 debian systemd[1]: Reached target
Network is Online.

May 15 10:00:08 debian systemd[1]: Started ACPI event
daemon.

May 15 10:00:08 debian systemd[1]: Listening on ACPID
Listen Socket.

Basics of Linux Administration 42

May 15 10:00:08 debian systemd[1]: Started LSB: RPC
portmapper replacement.

May 15 10:00:08 debian systemd[1]: Reached target RPC
Port Mapper.

May 15 10:00:08 debian systemd[1]: Activated swap
/dev/disk/by-uuid/4a28e383-9cad-4d88-997e-62cfb508d606.

May 15 10:00:08 debian systemd[1]: Activated swap
/dev/sda5.

May 15 10:00:08 debian systemd[1]: Activated swap
/dev/disk/by-path/pci-0000:03:00.0-scsi-0:0:0:0-part5.

May 15 10:06:19 debian systemd[1]: Starting Session 106
of user david.

May 15 10:06:19 debian systemd[1]: Started Session 106
of user david.

In the above command sequence, you can see that first there was a
permission denied error when trying to view the syslog file, but when
the sudo command was used (which typically prompts you for the root
password, since no other user was specified), the last 10 lines of the log
file were shown. Many systems prevent you from becoming the root user
with su and instead require you to use the sudo command.

The privileges for who can run what are determined by the /etc/sudoers
file, and that file should be edited using the visudo command to ensure
safe access to a critically important configuration file. For more
information on sudo, just use man sudo to view the manual page.

Files and Permissions
The reason that the user “david” was denied access to the file
/var/log/syslog in the previous example is that the user “david” doesn’t
have permission to access to the file. You can see this if you execute ls
-l /var/log/syslog:

david@debian:~$ ls -l /var/log/syslog

-rw-r----- 1 root adm 9074 May 15 10:17 /var/log/syslog

Basics of Linux Administration 43

The file is owned by the user “root” and the group “adm”. The file
permissions are “rw” (shorthand for read/write) for the owner and “r”
(shorthand for “read”) for the group with no permissions for anyone
else. Figure 2-2 shows how file permissions work in Linux.

Figure 2-2. Linux file permissions

In the file permissions graphic (Figure 2-2), a “d” on the left tells you
whether you are looking at a directory (or folder). Then the three sets of
permissions “rwx, r-x, r-x” say whether you can read, write, and execute
(or start the application) at the user level, the group level, and the
“everyone else” level (others). The type indicator shown in Figure 2-2
identifies the selected object as a directory, hence the “d” as the type. The
two most important types of objects in the Linux file system are
directories (“d”) and files (“-”). There are other possible types as well,
but for my purposes here, we’ll stick with directories and files.

Knowledge Check
Answer the following questions to check your knowledge

concerning the basics of Linux:

 • How do you typically log in to Linux?

 • What command allows you to become another user to execute
a privileged command?

 • File and directory permissions are assigned in three groups
arranged as “UGO.” What do the letters “UGO” represent?

drwxr-xr-x 1 cumulus cumulus 154 May 16 09:15 cumulus

drwxr-xr-x
Type User Group Other

d – directory
r – read

w – write
x - execute

Basics of Linux Administration 44

Summary
In this chapter, you learned the basics of Linux administration: how to
get Linux, how to log in to Linux, how the Linux file system works, and
how to run and view applications. In the next chapter, you’ll learn the
basics of Linux network administration.

If you want to learn how to communicate with other hosts and devices
on your local network and around the world, read on!

 Chapter 3

Basics of Linux
Network

Administration

If you’re ever going to do anything interesting with Linux, just like any
other OS, you need to be connected to a network, whether it’s your own
local company network or the public Internet. In this chapter, you’ll
learn what you need to know to connect your Linux host to the network
as well as some tools to help you troubleshoot if things don’t go exactly
as expected.

Here’s what you’ll learn:

• The different types of network interfaces in Linux

• How to configure IP addressing

• Networking troubleshooting tools available in Linux

• How to connect multiple network interfaces together to form a
bond

We’ll kick it off by talking about Linux network interfaces.

Understanding Linux Network Interfaces
Different versions of Linux may name network interfaces differently
(see the callout about how Linux network device names are changing).
In general, just about all Linux operating systems will have at least two
network interfaces. They are:

Basics of Linux Network Administration 46

• Loopback. The loopback (lo) interface will have an IP address of
127.0.0.1, which represents the host itself. Suppose you want to
open a web page running on the same Linux server you are on.
You could open http://127.0.0.1 in your web browser. That IP
address won’t be accessible over the network.

• Ethernet. The ethernet 0 (eth0) interface is typically the
connection to the local network. Even if you are running Linux
in a virtual machine (VM), you’ll still have an eth0 interface that
connects to the physical network interface of the host. Most
commonly, you should ensure that eth0 is in an UP state and
has an IP address so that you can communicate with the local
network and likely over the Internet.

 Predictable network interface naming
convention
If you’ve been in IT for any length of time, you
know that the only constant is change, and that
applies to network interface naming conventions
as well. Up until very recently, the only naming convention you had to
worry about was the one that was just presented. However, with
systems featuring systemd v197 or later, common network names such
as “eth0” will be assigned more predictable names based on what is
known as the predictable network interface naming convention. So,
rather than an interface named eth0, you may have one named ens3 or
enp0s3. Ironically, under older versions of systemd, there was
predictability about the existence of eth0. Under the Predictable
Network Interface naming guidelines, however, there isn’t a guaranteed
standard network interface name across systems. The new scheme does
have a number of benefits, the most important of which is that the
physical interface to interface name association will survive reboots,
even if you add hardware. Under the old system, if you added a
network adapter, you ran the risk of automatically changing interface

Basics of Linux Network Administration 47

The Linux command to configure network interfaces/devices/links
(whatever term you use) is ip link. In the following example, you can
see how ip link (with no other options) shows two different interfaces,
their status, and their MAC addresses associated with each one (we’ll
talk more about MAC addresses later):

david@debian:~$ ip link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue
state UNKNOWN mode DEFAULT group default

 link/loopback 00:00:00:00:00:00 brd
00:00:00:00:00:00

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
qdisc mq state UP mode DEFAULT group default qlen 1000

 link/ether 00:50:56:a3:71:f5 brd ff:ff:ff:ff:ff:ff

The ip link command is also used to configure network interfaces.
For example, you can change the status of interfaces with ip link set
[dev] { up | down }. You can also reconfigure network interfaces
with a command like ip link set lo mtu 1500.

For more information on the ip link command use man ip link.

names, which had serious consequences for your configuration. For
the purposes of this book, we’re sticking with the legacy naming
convention, but as you continue your Linux networking journey, the
predictable network interface naming convention is the new paradigm
you need to be aware of.

For more information this change, please visit
https://www.freedesktop.org/wiki/Software/systemd/
PredictableNetworkInterfaceNames/

Basics of Linux Network Administration 48

MAC Addresses
A media access control (MAC) address is the unique identifier assigned to
a network interface at layer 2—the Data Link layer—of the OSI Model.
A network interface always has a MAC address—often referred to as the
hardware address—even if it does not have an IP address. MAC addresses
are assigned at the time that a network adapter is manufactured or, if it’s
a virtualized network adapter, the time that the adapter is created and
appears as six groups of two hexadecimal digits each. On the Ethernet
interface, eth0, shown above, the MAC address is also called the link or
ether address. In the ip link output above, you can see that the MAC
address in this case is 00:50:56:a3:71:f5.

 Going back to the old
If you really want or need to use a deprecated
command such as ifconfig, arp, or route,
you still can. You just have to install the net-
tools package on your system. On a Debian
system like the one shown in the examples in this book, as a
privileged (root) user, run apt-get install net-tools. If
you’re using a Linux distribution that uses yum as a package
manager, such as CentOS, you can install net-tools using the
yum -y install net-tools command.

If you’re only doing this because you’re comfortable with the old
ways, however, we recommend that you start to phase out your use
of these old commands because there’s no guarantee that they’ll be
around forever, they aren’t kept up to date, and they may not
support all the features of the new commands.

Basics of Linux Network Administration 49

Elsewhere in the book
If you’re not familiar with the ISO OSI model, that’s ok. We’ll

be talking more about that once we get a bit deeper into networking
later in this book (see the sidebar on page 65). Also, if you want to
learn about how Ethernet addresses map to IP addresses, we’ll be
covering that too — stay tuned!

But what if you want to know the IP addresses of these network
interfaces? That’s next!

IP Addressing
They are unique on the same network, every device has at least one, and
addresses typically fall somewhere between 1.1.1.1 and
255.255.255.255. What are they? IP addresses, of course! For this book,
I’m going to assume that you already know the basics around TCP/IP,
and we’ll focus on how to work with them in Linux. Later in this
chapter, we’ll talk about how to configure IP addresses on your Linux
machine.

To view IP addresses, use the ip address command, or just ip addr,
like this:

david@debian:~$ ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue
state UNKNOWN group default

 link/loopback 00:00:00:00:00:00 brd
00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
qdisc mq state UP group default qlen 1000

 link/ether 00:50:56:a3:71:f5 brd ff:ff:ff:ff:ff:ff

Basics of Linux Network Administration 50

 inet 192.168.1.80/24 brd 192.168.1.255 scope global
dynamic eth0

As you can see, the IP address of the loopback interface is 127.0.0.1.
What’s the address of the eth0 interface in this case? The eth0 “inet”
address (IPV4 address) is 192.168.1.80, and it’s a dynamic address,
received via DHCP, which we’ll talk about below.

When it comes to Linux networking tools, there is one that just about
everyone has heard of, and that is ping. Ping, which began life as an
acronym but now enjoys its status as a full-fledged word, is the most
basic network test tool around for testing network reachability. It sends
out an Internet Control Message Protocol (ICMP) packet across the
network and notifies you whether there is a response. If a host is up and
able to communicate on the network, an ICMP response will be
returned. If, however, a host is not reachable, you will get a notice that
the host was unreachable or timed out (meaning that the ping test
failed). Here’s an example of a host that is unreachable:

david@debian:~$ ping -c5 192.168.192.196

PING 192.168.192.196 (192.168.192.196) 56(84) bytes of
data.

--- 192.168.192.196 ping statistics ---

5 packets transmitted, 0 received, 100% packet loss,
time 4018ms

 (The “-c5” was used to send just five ping packets; otherwise, ping will
continue forever.)

In these results, five packets were transmitted, and all of them received
no response, so there was 100% packet loss. What that means is that this
host is unreachable, or down.

Another common Linux network troubleshooting tool is traceroute.

Traceroute probes the network between the local system and a
destination, gathering information about each IP router in the path.

Basics of Linux Network Administration 51

The traceroute command is useful when you think there may be a
network issue, such as a host down along a path or a slow response from
one of the intermediary nodes, and you want to find out which node is
creating the problem. Here’s an example:

david@debian:~$ traceroute www.apple.com

traceroute to www.apple.com (23.46.180.139), 30 hops
max, 60 byte packets

 1 192.168.1.1 (192.168.1.1) 0.225 ms 0.273 ms 0.283
ms

 2 10.10.0.1 (10.10.0.1) 11.046 ms 11.938 ms 16.645
ms

 3 pool.hargray.net (64.202.123.123) 28.169 ms 22.060
ms 21.785 ms

 4 10ge14-8.core1.atl1.he.net (216.66.49.77) 22.552 ms
22.391 ms 19.566 ms

 5 atx-brdr-01.inet.qwest.net (63.146.26.69) 23.189 ms
21.705 ms 21.952 ms

 6 a23-46-180-139.deploy.static.akamaitechnologies.com
(23.46.180.139) 21.116 ms 21.365 ms 19.497 ms

But why are some of those addresses listed on the left actually names
instead of IP addresses? That’s because domain name system (DNS) is
replacing the IP with a friendly name. You’ll learn about DNS in just a
couple of pages!

Remember, every Linux command shown here has verbose instructions
on how to use it in the man page. Just type man commandname to learn
more.

DHCP
What if you have dozens, hundreds, or thousands of computers on your
network? It would be incredibly time-consuming to manually assign IP
addresses and to actually track which machines have which IP address.
That’s where the dynamic host configuration protocol (DHCP) comes in.

Basics of Linux Network Administration 52

DHCP is used to obtain an IP address when a host or device first comes
on the network.

DHCP is commonly used for client systems or devices that don’t
experience any side effects from a periodically changing IP address. On
server systems, administrators either manually configure static IP
addresses, or they create what are known as static DHCP reservations
that are tied to the MAC address of the network adapter. These static
reservations ensure that the network adapter will get the same IP address
every time it restarts.

Here’s how the typical DHCP process works:

1. When a computer starts up, it sends a DHCP request out on
the network.

2. Assuming a DHCP server is present, a DHCP server responds
with the IP address configuration for that device.

3. That IP address is marked as reserved so that it’s not
accidentally assigned to some other device.

To learn more about the exact packets that make up the process of
obtaining an IP address, see this diagram:
http://www.smartpctricks.com/wp-content/uploads/2014/04/DHCP-
Packets-Establishment.png.

Note that the prior text said “IP address configuration” and not just “IP
address.” The IP configuration that is returned to a requesting client
contains, at a minimum, the IP address, the IP subnet mask, the IP
default gateway, and DNS server details. Most end user devices are
configured to use DHCP.

Most operating systems, including Linux, are configured to use a DHCP
client to obtain their initial IP address. You can tell an interface is using
DHCP if its IP address is set to DYNAMIC, as in the output below.

Basics of Linux Network Administration 53

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
qdisc mq state UP group default qlen 1000

 link/ether 00:50:56:a3:71:f5 brd ff:ff:ff:ff:ff:ff

 inet 192.168.1.80/24 brd 192.168.1.255 scope global
dynamic eth0

The local configuration file for the DHCP client (called dhclient) is at
/etc/dhcp/dhclient.conf. This is a configuration file that dictates to
Linux how it will receive IP configuration information from a DHCP
server. To check the status on the DHCP client, you can cat the syslog
(system log file) and grep for dhcp, like this:

david@debian:~$ sudo grep -Ei dhcp /var/log/syslog

May 15 08:37:44 debian dhclient: DHCPREQUEST on eth0 to
192.168.1.1 port 67

May 15 08:37:44 debian dhclient: DHCPACK from
192.168.1.1

May 15 08:37:44 debian NetworkManager[425]: <info>
(eth0): DHCPv4 state changed renew -> renew

May 15 08:37:44 debian nm-dispatcher: Dispatching action
'dhcp4-change' for eth0

You can find more details on the DHCP client leases in the files
/var/lib/dhcp/*.leases

DNS
Computers that connect to each other using TCP/IP (the most prevalent
form of connection protocol) talk with each other using IP addresses;
however, it would be really painful to have to remember the IP address
of everything you want to connect to. Imagine having to recall the IP
address of Google each time you wanted to search the web. Domain
name system (DNS) is used to map IP addresses to names. Everyone is
familiar with using their web browser, entering a friendly name like
google.com or apple.com, and being taken to the company's website
without ever having to type an IP address. It’s DNS behind the scenes

Basics of Linux Network Administration 54

that is mapping that friendly name to an IP address by doing a DNS
lookup. To find out if your Linux host is using DNS, we will be running
through some troubleshooting commands, such as dig and nslookup,
later.

That being said, the basics of DNS in Linux are this:

• A local file called /etc/hosts is used for the first point of lookup
for any host name prior to going out to a DNS server on the
network. If the name is found there, no further searches are
performed. As the superuser, you have the option to edit the
hosts file and configure a static name to IP address mapping.

• The /etc/resolv.conf file shows the local domains to be searched
and what server names to use for DNS resolution.

For example, here’s what a sample resolv.conf file looks like:

david@debian:~$ sudo cat /etc/resolv.conf

search wiredbraincoffee.com wiredbraincoffee.com.

nameserver 192.168.1.1

In this case, the default domain is wiredbraincoffee.com, and the only
name server is 192.168.1.1.

DNS Resolution
By default, DNS name resolution works as described here, but

is very modular. The hosts portion of /etc/nsswitch.conf can include
directory services like NIS+ or LDAP as well.

When it comes to troubleshooting DNS, you should be aware of the
following important tools:

• dig. The domain Internet roper, or dig, performs verbose DNS
lookups and is great for troubleshooting DNS issues.

Basics of Linux Network Administration 55

• getent ahosts. The getent tool with the ahosts option
enumerates name service switch files, specifically for host
entries.

• nslookup. The name server lookup, or nslookup, performs a
variety of different DNS server lookups: mail server lookups,
reverse lookups, and more. It’s commonly used to look up the
IP address of a host.

Network Statistics and Counters
When performing network troubleshooting, it’s always good to gather
some statistics to answer questions like, “Is the network interface even
transmitting any data? Is the interface taking errors? What process is
sending all that traffic?”

Here’s an example of the netstat command displaying active processes
that have active network interface connections:

Here’s an example of the ip -s link command showing us the
statistics for our network links:

david@debian:~$ ip -s link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue
state UNKNOWN mode DEFAULT group default

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 RX: bytes packets errors dropped overrun mcast

 63339 505 0 0 0 0

 TX: bytes packets errors dropped carrier collsns

 63339 505 0 0 0 0

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
qdisc mq state UP mode DEFAULT group default qlen 1000

 link/ether 00:50:56:a3:71:f5 brd ff:ff:ff:ff:ff:ff

 RX: bytes packets errors dropped overrun mcast

 410864536 1342597 0 0 0 925004

 TX: bytes packets errors dropped carrier collsns

 20398071 163673 0 0 0 0

Basics of Linux Network Administration 56

Here’s an example of the netstat command showing us what our
active processes are that have the network interface open:

david@debian:~$ netstat
Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 debian:ssh iMac:52985 ESTABLISHED

tcp 0 0 debian:40980 192.168.1.128:37518 TIME_WAIT

tcp6 1 0 localhost:33904 localhost:ipp CLOSE_WAIT

Active UNIX domain sockets (w/o servers)

Proto RefCnt Flags Type I-Node Path

unix 20 [] DGRAM 8963 /run/systemd/journal/dev-log

unix 6 [] DGRAM 8972 /run/systemd/journal/socket

unix 2 [] DGRAM 15451 /run/user/1000/systemd/notify

(output truncated)

And here’s an example of the netstat -l command that shows us the
active listening services on this host:

david@debian:~$ netstat -l

Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 localhost:mysql *:* LISTEN

tcp 0 0 *:48875 *:* LISTEN

tcp 0 0 *:sunrpc *:* LISTEN

tcp 0 0 *:ssh *:* LISTEN

tcp 0 0 localhost:ipp *:* LISTEN

Active UNIX domain sockets (only servers)

Proto RefCnt Flags Type State I-Node Path

unix 2 [ACC] SEQPACKET LISTENING 8197 /run/udev/control

unix 2 [ACC] STREAM LISTENING 8200 /run/systemd/journal/stdout

unix 2 [ACC] STREAM LISTENING 15895 /run/user/1000/keyring/pkcs11

(output truncated)

Basics of Linux Network Administration 57

How to Configure Network Interfaces
So far, we have covered a lot about how to view and show network
information, but nothing about how to change network configurations.
Let’s cover some of the most common network configurations that
someone new to Linux might want to perform.

We’ll start off with changing an IP address. When it comes to making
any changes in Linux, keep in mind that you can make two types of
changes:

• Changes that are immediately effective but are non-persistent
(meaning they won’t survive a restart of the operating system)

• Changes that are effective after the next restart of the OS,
known as persistent changes

To make an immediately effective change in your IP configuration, you
use the ip command with its variety of command options such as link,

route, and address. To use the ip command set, you’ll have to have
the iproute2 package installed. It usually is installed by default, but that
depends on which version of Linux you are using.

Here we use the ip address command, like this:

root@debian:/home/david# ip address add 10.10.10.10/8
dev eth0

However, once the Linux machine is restarted, the default IP address will
be back on interface eth0.

To make this IP address change persistent on a Debian or Ubuntu
system, you need to edit the file /etc/network/interfaces and add the
configuration for eth0. To edit this file, use the nano command like this:
nano /etc/network/interfaces. If you are using CentOS or RHEL (Red
Hat Enterprise Linux), the same configuration is found in the
/etc/sysconfig/network-scripts directory.

Basics of Linux Network Administration 58

To make the IP address change take effect, you can either reboot the host
or use the ifdown/ifup commands. At that point, the ip address
command output might look like this:

david@debian:~$ ip address show dev eth0

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
pfifo_fast state UNKNOWN group default qlen 1000

 link/ether 00:0c:29:d0:e8:7e brd ff:ff:ff:ff:ff:ff

 inet 192.168.1.72/24 brd 192.168.1.255 scope global
eth0

 valid_lft forever preferred_lft forever

 inet6 fe80::20c:29ff:fed0:e87e/64 scope link

 valid_lft forever preferred_lft forever

You can see that the new IP address has been added, and making the
change this way ensures that it is persistent after the Linux OS restart.

 Adventures in editing text files
Editing of text files in Linux is usually done
with the vi, emacs, or nano commands.
The “battle” between vi and emacs is long
running, and their followers are fanatical. The vi
text editor has been around since 1976 and is known for its lack of
user-friendliness. With vi you must already know, or be willing to
read the documentation on, how to use specific command options
to even start editing text. Similar to vi, emacs has also been around
since the 1970’s and isn’t known for its ease of use. Contrary to vi,
emacs has so many plugins (including terminal, calculator, email,
and web browser) that it feels like its own operating system. Nano,
on the other hand, was created in 1999 and is very user-friendly
because it works just like a traditional word processing application.
For those who are new to editing text in Linux, my
recommendation is to use nano.

Basics of Linux Network Administration 59

 ifdown and ifup commands
The ifdown and ifup commands are used to
restart an interface without having to restart
a whole server. Once you make a change to
a network interface configuration, you need
to force that interface to reread its configuration file. You
accomplish this by bringing the interface down with the ifdown
command and then bringing it back up with the ifup command.
When the ifup command is executed, the configuration file is
reread and the interface is brought back into operation with its
newly minted parameters.

By the way, the ifdown and ifup commands aren’t included in the
default path on all Linux distributions. As such, you may have to
explicitly include the full path to the command. For example, to
bring down the eth0 interface, you may need to type /sbin/ifdown
eth0. Likewise, to bring the interface back up, you may need to
type /sbin/ifup eth0.

The /etc/network/interfaces file is used to tell ifup and ifdown how
to configure network interfaces as those interfaces are brought up
and down. For example, you would configure an interface with a
static IP address by entering the details in the interfaces file. More
information on the interfaces file can be found by typing man
interfaces.

A word of warning: If you’re connected to your Linux server via
SSH, be mindful of which interface you’re working with. If you
accidentally bring down the network interface that your SSH
connection is using, you might lose remote access to the server.

Basics of Linux Network Administration 60

To recap, here are some of the common network changes that you will
probably want to make in order for your Linux networking
configuration to persist across reboots:

• Change the state of network interfaces by using the ifdown /
ifup command set.

• Add DNS name servers to an interface by editing the
/etc/resolv.conf file or the /etc/network/interfaces file.

• Change the hostname of the server by editing the /etc/hostname
and /etc/hosts file, and verifying it with hostname -f.

Network Interface Bonding
There are times when you need more bandwidth than a single interface
can provide, or you want some form of link redundancy in case of a
cabling or other network problem. This link redundancy function goes
by many names, depending on the vendor: EtherChannel, VMware
PortGroups, Bonds, and Link Aggregation Groups (LAG) are just a few.
Linux also provides this capability and calls it bonding. It allows you to
create a single logical network link that is comprised of multiple
physical links and that scales up as you add more interfaces, can provide
load balancing across the interfaces, and can provide failover protection.

To use network bonding, you need to install the bonding kernel module
via the modprobe command. Modprobe allows you to add additional
capability to the Linux kernel. It works like this:

david@debian:~$ sudo modprobe bonding

At this point, you can create a bond using the iproute2 tools, which
allow you to establish the bond as well as set its mode (we’ll cover modes
more in the next chapter). You can get some hints with ip link help
and ip link help bond.

Basics of Linux Network Administration 61

Please note that you may read about ifenslave when
searching the Internet; however, that tool has been deprecated
with the iproute2 tools taking its place. You will find that

many once-common Linux commands become obsolete over time, so
make sure to stay current!

You can put interfaces eth0, eth1, and eth2 into a bond like this (Figure
3-1):

david@debian:~$ sudo ip link add bond0 type bond mode
802.3ad

david@debian:~$ sudo ip link set eth0 master bond0

david@debian:~$ sudo ip link set eth1 master bond0

david@debian:~$ sudo ip link set eth2 master bond0

Figure 3-1. Multiple Ethernet interfaces bonded into a single
network interface

One of the most common parameters to set when creating a bond is the
“mode,” which is how the bond interacts with the connected network.

LINUX OPERATING SYSTEM

eth0 eth1 eth2 eth3 ethN

bond0

Basics of Linux Network Administration 62

 Linux network bonding modes
Linux currently supports the following bond
modes:

• balance-rr. The default, round-robin
bonding, which provides load balancing and
fault tolerance

• active-backup. Provides fault tolerance whereby only one
slave can be active at a time and, if it fails, the other slave
takes over

• balance-xor. Provides fault tolerance and load balancing by
transmitting based on hash

• broadcast. Provides fault tolerance by transmitting
everything on all slave interfaces

• 802.3ad. IEEE 802.3ad standard for dynamic link
aggregation creates aggregation groups for links that share
the same speed and duplex in order to provide for fault
tolerance and load balancing. 802.3ad is one of the most
common types of bonding. 802.3ad uses LACP to
communicate with the other side of the bond.

• balance-tlb. Adaptive transmit load balancing that doesn’t
require any special switch support

• balance-alb. Adaptive load balancing that doesn’t require
any special switch support due to its use of ARP negotiation

The most common modes are active-backup and 802.3ad.

Basics of Linux Network Administration 63

Bonding, when incorrectly configured or cabled, can be the source of
some pretty messy network problems; 802.3ad mode runs the Link
Aggregation Control Protocol (LACP) with the switch or server at the
other end of the bond to make sure that everything is connected
correctly.

Knowledge Check
Answer the following questions to check your knowledge

concerning the basics of Linux networking administration:

 • How do you show the IP addresses configured on a Linux
host?

 • How do you change the IP address configuration of a Linux
host?

 • How do you test basic network connectivity?

Summary
You should now know the basics of Linux network administration. You
just learned about network interfaces, DHCP, DNS, IP address
configuration, interface bonding, and more.

Coming up in the next chapter, you’ll learn about L2 versus L3
networking, routing tables, bridges, ACLs, VXLANs, VLANs, and more!

 Chapter 4

Understanding
Linux

Internetworking

You might have heard of something called “the Internet,” the largest
internetwork ever created. In fact, the term Internet (with a capital I) is
just a shortened version of the term internetwork. An internetwork is
multiple networks connected together. For example, most companies
create some form of internetwork when they connect their local-area
network (LAN) to a wide area network (WAN) in order to connect to one
or multiple other LANs. For IP packets to be delivered from one
network to another network, IP routing is used — typically in
conjunction with dynamic routing protocols such as OSPF or BGP. You
can easily use Linux as an internetworking device and connect hosts
together on local networks and connect local networks together and to
the Internet.

Here’s what you’ll learn in this chapter:

• The differences between layer 2 and layer 3 internetworking

• How to configure IP routing and bridging in Linux

• How to configure advanced Linux internetworking, such as
VLANs, VXLAN, and network packet filtering

To create an internetwork, you need to understand layer 2 and layer 3
internetworking, MAC addresses, bridging, routing, ACLs, VLANs, and
VXLAN. We’ve got a lot to cover, so let’s get started!

Understanding Linux Internetworking 65

 The OSI Model
Before we jump deeply into the networking pool, let’s
go over the model on which all networking
standards are based: the International
Organization of Standardization Open Systems
Interconnection (ISO OSI) model. This model has been used for
decades to describe the networking stack, and it describes the very
wires (or lack thereof, in the case of wireless) that transfer data to the
applications that operate on the network. This all-encompassing
model has driven network development, and most products on the
networking market are specifically designed to service one or more
layers of the model, which are shown in
this callout. In order for an application
to “talk” to another application on
another machine on the network, that
application has to traverse down its own
networking stack, ultimately placing its
information onto the wireless or media
that connects the two machines. The
application, however, doesn’t need to
handle that task itself. It simply presents
its data to the next lower layer—the
presentation layer—which processes
what it gets from the application layer
and then sends it down the stack to the
session layer and so forth. This is one of
the reasons that applications don’t need
to develop their own communications
stacks and can just rely on what is
provided to them in the operating
system.

M
ED

IA
 L

AY
ER

S
HO

ST
 L

AY
ER

S

APPLICATION

NETWORK PROCESS
TO APPLICATION

DA
TA

PRESENTATION

DATA REPRESENTATION
AND ENCRYPTION

DA
TA

SESSION

INTERHOST
COMMUNICATION

DA
TA

TRANSPORT

CONNECTION AND
RELIABILITY

SE
GM

EN
T

NETWORK

LOGICAL ADDRESSING
PATH DETERMINATION

PA
CK

ET

DATA LINK

PHYSICAL ADDRESSING
(MAC AND LLC)

FR
AM

ES

PHYSICAL

MEDIA, SIGNAL, AND
BINARY TRANSMISSION

 BI
TS

Understanding Linux Internetworking 66

Layer 2 vs. Layer 3 Internetworking
In the OSI model, layer 1 is the physical layer that includes the physical
media used to connect the network. Specifications in this area describe
cable qualities and the properties of electrical and optical signals used
to move bits around. Examples of layer 1 technologies include Gigabit
Ethernet on category 5 cable, 100Gigabit Ethernet on parallel single
mode fiber, and 802.11 wireless.

Above that is layer 2, or the data link layer; Ethernet is a broadly
deployed layer 2 protocol. Ethernet networking works to encapsulate
data and pass that data in the form of frames. Frames leverage the Media
Access Control (MAC) addresses that we discussed in Chapter 3. An
Ethernet frame includes the MAC address of the destination interface
on the target system as well the MAC address of the source interface on
the sending system so that the recipient device knows where the frame
originated. Every Ethernet device, whether it’s installed in a server, a
switch, or a router, has a unique MAC address on their local network.

Transparent bridges are layer 2 devices that send all frames received on
one port out the other bridge ports, based on knowledge of the frame’s
destination MAC address. Ethernet switches are multiport network
bridges. Multiport network bridges learn of the MAC addresses in the
network and intelligently forward frames based on the destination
MAC address in the frame.

Layer 2 networking works in one of two ways:

• The device has explicit knowledge of a frame’s destination
address, and the device sends the frame out on the port where it
knows the destination exists.

• In the event that the specific destination is unknown, the device
falls back to sending the frame to every node in the layer 2
domain via what is known as a broadcast.

Understanding Linux Internetworking 67

Definition: Broadcast Domain
In Ethernet networking, layer 2 broadcasts don’t go past

routers because that is the boundary of the layer 2 network. Thus, the
entire Ethernet network is the broadcast domain because no
broadcasts pass the Ethernet LAN.

The problem is that these approaches limit the ability for layer 2
networks alone to operate efficiently beyond relatively small-scale
locations and very simple topologies. Layer 2 networks suffer from two
major limitations. First, they allow for hosts to send traffic to unknown
destinations. This causes broadcasts, which impact every node in the
broadcast domain. Many networks have been taken offline due to
"broadcast storms," or when many hosts are broadcasting at once. In
contrast, layer 3 networks do not allow for unknown communication.
If a layer 3 router does not have a route to the destination IP address, it
will drop the packet instead of broadcasting like layer 2 does.

Second, layer 2 networks have globally unique MAC addresses that are
assigned by the manufacturer. There is no organization to these
addresses across manufacturers. If you have servers with Intel and
Mellanox network cards, the layer 2 MAC addresses will not have any
commonality. Again, when comparing layer 2 MAC addresses to layer
3 IP addresses, companies manually plan IP addressing schemes so that
there is a hierarchy to these IP addresses. An office may have all IP
addresses within it as part of a single IP subnet, like 10.0.0.0, allowing
the company to use a single subnet to represent the entire office. With
layer 2 addressing, there is no ability to summarize or aggregate MAC
addresses; every unique MAC address must be shared with every host in
the layer 2 domain.

When a node sends out an IP packet, it consults its routing and neighbor
(ARP) tables and sends the packet to the device most likely to get that
packet where it needs to go. If the destination is in the same layer 2

Understanding Linux Internetworking 68

network, an entry in the neighbor (or ARP) table tells the sender how
to use layer 2 internetworking. When IP devices need to communicate
with other IP-based addresses that are outside of their local layer 2
network, the route table may point to a specific router that will get the
packet closer to the destination or fall through to the default gateway,
which is then responsible for getting the packet to the destination. If no
default route exists and a matching route does not exist, the packet will
be dropped.

Layer 2 Internetworking on Linux
Systems
Initially, Linux networking was focused on end-node networking and
layer 3 internetworking; however, the advent of virtualization and
containerization changed that forever. Today’s Linux networking stack
has rich layer 2 internetworking functionality and continues to evolve
at a rapid pace.

Bridging
What do you do when you have two different Ethernet networks that
need connecting? Build a bridge! Bridges have traditionally been
dedicated hardware devices, but you can easily create a bridge in Linux.
For example, when you have a Linux host that has two or more network
interfaces, you can create a bridge to pass traffic between these
interfaces. You can add two interfaces to a Linux bridge with ip link
set and ip link add using:

david@debian:~$ sudo ip link add br0 type bridge

david@debian:~$ sudo ip link set eth0 master br0

david@debian:~$ sudo ip link set eth1 master br0

Understanding Linux Internetworking 69

Here’s what is happening:

• The first command, ip link add, is creating a bridge named
br0.

• The two ip link set commands add the two Ethernet
interfaces, eth0 and eth1, to the new bridge resulting in a
connection between these two interfaces.

Once a bridge is created, you can view the MAC address table, which
shows which ports can reach a specific MAC address, with the bridge
command. The command shown in the example below uses fdb show
as its parameter. In this command, fdb stands for forwarding database
management, and show is a way for you to see the current contents of
this database:

david@debian:~$ sudo bridge fdb show

[sudo] password for david:

01:00:5e:00:00:01 dev eth0 self permanent

33:33:00:00:00:01 dev eth0 self permanent

33:33:ff:d0:e8:7e dev eth0 self permanent

01:00:5e:00:00:fb dev eth0 self permanent

33:33:00:00:00:fb dev eth0 self permanent

01:00:5e:7f:ff:fa dev eth0 self permanent

01:00:5e:00:00:01 dev eth1 self permanent

33:33:00:00:00:01 dev eth1 self permanent

01:00:5e:00:00:01 dev eth2 self permanent

33:33:00:00:00:01 dev eth2 self permanent

Once the bridge has “bridged,” the different Ethernet networks, all the
devices on these networks can communicate, at least at layer 2 (see
Figure 4-2).

Understanding Linux Internetworking 70

Figure 4-2. Linux bridge configuration

Spanning Tree
The downside to big networks is that you can accidentally create loops
that feed upon themselves and that can ultimately bring the network
down. For example, if you accidentally plug one switch port directly
into another port on the same switch, you may have created a loop. You
can mitigate these loops through the use of spanning trees. It’s also
important to note that layer 3 has a TTL (time to live) field that reduces
the impact of loops — packets eventually die and are dropped — while
layer 2 does not have a TTL and will loop a frame forever.

A spanning tree is always recommended for any bridge or device
configured with a bridge interface to prevent bridging loops, reduce
broadcast traffic, and provide automatic failover if you have redundant
links. You can perform most spanning tree configurations in Linux by
using the mstpd-ctl command, which controls the multiple spanning
tree protocol daemon (MSTPD).

Bridges bridge frames, and routers route packets. Modern network
switches can do a little of both depending on the hardware and software
on the device. The really cool thing about Linux is that it can be used to
create both layer 2 and layer 3 switches and routers, allowing you to
both bridge and route using Linux.

BRIDGE

eth0 eth1 eth2 ethN

Understanding Linux Internetworking 71

 Bridging Loops
Because bridges forward broadcast packets out
every port, the broadcast is amplified by both
devices when there are multiple paths between two
bridges. For example, if two bridges are connected
with two links, the first bridge receives a broadcast frame from an
attached host. The bridge will take this single frame and send one copy
on each link to the other bridge. This second bridge will receive these
two broadcast frames, one on each link, and will make new copies,
sending them back on each link. This back and forth broadcast
replication, known as a "broadcast storm," will continue forever.

Unlike layer 3 packets, layer 2 frames do not possess a TTL field. A
packet contains a special field that is set by the host that first created the
packet. Each router along the path will decrement this field by 1. If a
misconfiguration in the network causes a similar loop, the TTL field will
eventually be decremented to 0 and the packet will be dropped. Because
a layer 2 frame does not have this field, there is no limit to how many
bridges a frame can pass through. Also, because the packet is being
bridged and not routed, the TTL field will never be examined by any of
the devices and never decremented. The lack of TTL is one of the major
problems with layer 2 networks.

The Spanning Tree Protocol (STP) does not add a TTL field to the frame,
but it will prevent layer 2 loops from forming, preventing the broadcast
storm described earlier. Bridges that speak STP will exchange
information about the network using Bridge Protocol Data Units
(BPDUs). Through this BPDU exchange, the bridges will build a loop-
free "tree" of the network. In our two-switch example, STP would
disable one of the two links and never send traffic over it, until the active
link failed.

Understanding Linux Internetworking 72

 The basics of TCP/IP addresses
IP version 4 addressing, known as IPv4, uses a 32-bit
number to identify every host/device. These
addresses are usually written using dotted decimal,
such as 192.168.192.168. Every device has a configured
subnet mask, such as 255.255.255.0, that tells the device which part of
the IP address is used to identify the network and which part is the
device.

The 32-bit address is broken up into four 8-bit sections called octets. For
example, the decimal to binary conversation for the above IP address
(192.168.192.168) is

11000000 10101000 11000000 10101000.

The conversation of the subnet mask from 255.255.255.0 is

11111111 11111111 11111111 00000000

How, exactly, does your networking stack know that 192.168.10.2 is not
in the same network as 192.168.192.168 when using a 255.255.255.0
subnet mask? If you’ve ever wondered how the math works, the magic
lies in the use of the bitwise AND operator. In the figure below, you
can see that performing a bitwise AND operation between the
origination address and the local network’s subnet mask results in a
calculation that shows that the local network is 192.168.192.0. When a
node in this network wants to communicate with the IP address
192.168.10.2, a similar operation is performed on this destination
address with the result indicating that the destination address is
192.168.10.0. Because the destination address has been determined to
be non-local, this traffic is sent to the local layer 3 device, typically a
router, which then forwards the packet to the correct destination
network.

Understanding Linux Internetworking 73

Layer 3 Internetworking View on Linux
Systems
The IP protocol is pretty heavily embedded in Linux systems, and it is
the primary (and default) way for Linux systems to communicate with
the rest of the world, so we’ll start with layer 3 internetworking. One
interesting thing to note is that the tables, tools, and processes used by
end-nodes to reach other end-nodes are exactly the same as those used
by routers (layer 3 internetworking devices) to forward packets to end-
nodes.

Neighbor Table
When an IP node wants to communicate with a system in the same layer
2 domain, it looks in its neighbor table, or ARP table, to determine how
to construct the Ethernet frame. If the desired destination IP address is
not in the neighbor table, the node issues an ARP request, which is
broadcast to everyone in the layer 2 domain, that asks, “Please tell me
the MAC address for the node with IP address X.X.X.X.” Assuming the
target device is available, the node with that IP address will respond. In
Linux, you view (and manipulate) the Neighbor table using the ip
neighbor show command (also known as ip neighbor show, ip
neigh show, or even just ip n s):

Understanding Linux Internetworking 74

david@debian:~$ ip neigh show

172.20.10.2 dev eth0 lladdr ac:bc:32:9c:a6:3b REACHABLE

172.20.10.1 dev eth0 lladdr 72:70:0d:4c:6b:64 STALE

You’ll receive a list of IP addresses that have been recently resolved to
MAC addresses, their associated MAC addresses, which interface is used
to reach the layer 2 network where they can be reached, and the
confidence of knowing these IP/MAC address relationships. Typically,
the neighbor table is maintained dynamically based on the ARP
protocol; however, it can be manually controlled with the ip neighbor
command.

IP Routing
The routing table has knowledge of specific networks, or summaries of
networks, that a node can reach. Minimally, each routing table will have
a “default route” where the node can send any IP packet that is not in an
attached layer 2 network. You can view the routing table with the ip
route show command, like this:

david@debian:~$ ip route show

default via 172.20.10.1 dev eth0 proto static metric
1024

172.20.10.0/28 dev eth0 proto kernel scope link src
172.20.10.10

Here you can see that the routing table knows that the 172.20.10.0/28
network is a locally attached layer 2 network. The routing table also
includes a route to the default gateway (172.20.10.1), which Linux calls
“default,” that will be used to reach any node that isn’t on the local
network. If you’re used to networking on non-Linux systems, you may
have seen a default route expressed as something like 0.0.0.0/0.

Routes can be added or deleted from the routing table in a few different
ways:

Understanding Linux Internetworking 75

• By assigning IP addresses to node interfaces

• By manually adding or removing them using the ip route
command

• By dynamically inserting them using routing protocols

For example, to create a static route to router 192.168.1.1 through the
eth1 interfaces, you would use the ip route command, like this:

ip route add default via 192.168.1.1 dev eth1

However, once the host is restarted, this route disappears because it’s not
persistent. To make this route persistent, you would edit the
/etc/network/interfaces file and, after the network device configuration,
add a post-up command with the same ip route command so that
this static route is added every time the Linux host is restarted or the
network interface is brought up. Here’s an example of what it might
look like in the /etc/network/interfaces file:

iface eth1 inet static

address 192.168.1.1

netmask 255.255.255.0

post-up ip route add default via 192.168.1.1 dev eth1

The purpose of the post-up command is to add the default route only
after the network interface is brought up.

Definition: Free Range Routing
Free range routing (FRR) is an open-source Linux suite of IP

routing protocols that includes BGP, IS-IS, LDP, OSPF, PIM, and RIP.
Because it integrates with a wide variety of Linux stacks, FRR has a
wide range of use cases including connecting hosts, VMs, and
containers to the network, Internet access routers, and Internet
peering. Based on the Quagga project, FRR is used by many
companies for many use cases around the world.

Understanding Linux Internetworking 76

Virtual LANs (VLANs)
You already know that a LAN is a local area network spanning a
relatively small physical area. Building on that concept, a virtual LAN
(or VLAN) allows LANs to span multiple switches across very large
networks while still achieving traffic isolation from other networks.
VLANs are used to isolate hosts or applications from each other for the
purposes of security, data flow, and scale. Individual interfaces can be a
part of one or more VLANs. When they are a part of more than one
VLAN, in order to maintain some semblance of sanity, the frames
traversing that link are tagged with an IEEE 802.1Q tag. These tags are
an additional piece of information placed at the front of the frame to
identify the VLAN. Interfaces carrying multiple VLANs are often called
trunks. VLANs are configured using both the ip link and bridge
Linux commands.

Suppose you want a Linux system to have eth1 in one bridge (VLAN11),
eth3 in a second bridge (VLAN12), and eth2 in both (i.e. a tagged
trunk). First, we make sure the 802.1Q trunking driver is installed. Then
we create a bridge, add the ports to the bridge, and make sure the ports
are part of the desired set of VLANs. Notice that both eth1 and eth3
used untagged VLANs. However, per the bridge’s configuration, traffic
from those ports will be placed onto their configured VLANs, which are
VLAN 11 and VLAN 12 in this case. Untagged traffic from the trunk
port will be placed into the native VLAN, which is VLAN 1 by default.

If you look at the Ethernet frames, you can’t tell that the interfaces are
part of a VLAN; however, eth2 is a member of both VLANs, and all
frames carry the 802.1Q VLAN tag (shown in Figure 4-3).

In the following configuration, we ensure that the 802.1q module is
loaded, add bridge0 (br0) as the native VLAN (VLAN 1), add the
Ethernet interfaces to br0, assign eth1 and eth3 to their respective
VLANs (11 and 12), and bring all interfaces up.

Understanding Linux Internetworking 77

Figure 4-3. Tagged and untagged VLAN traffic

sudo modprobe 8021q

sudo ip link add br0 type bridge vlan_filtering 1

sudo ip link set eth1 master br0

sudo ip link set eth2 master br0

sudo ip link set eth3 master br0

sudo bridge vlan add dev eth1 vid 11 pvid untagged

sudo bridge vlan add dev eth3 vid 12 pvid untagged

sudo bridge vlan add dev eth2 vid 11

sudo bridge vlan add dev eth2 vid 12

sudo ip link set up dev br0

sudo ip link set up dev eth1

sudo ip link set up dev eth2

sudo ip link set up dev eth3

VLAN 11 VLAN 12

eth1 eth2 eth3

UNTAGGED 801.1Q
TAGGED
TRUNK

UNTAGGED

Understanding Linux Internetworking 78

To help you better understand the configuration above, there are a few
things that you should know:

• In the command sudo bridge vlan add dev eth1 vid
11 pvid untagged, the vid parameter is the VLAN ID. VLAN
IDs are used to specify which VLAN the interface is assigned to.
The pvid parameter specifies the private VLAN ID. In this case,
the private VLAN is left untagged.

• In the example above, MAC address tables are per-VLAN. If you
were to look at the MAC address table in VLAN 11 and VLAN
12, you’d find that they would be very different. The trunk link
would have a combination of MAC addresses from both VLAN
11 and 12.

 Much ado about 802.1q
The purpose of the VLAN is to have multiple
devices on the same VLAN communicate as if they
were the only devices on that network, giving
administrators flexibility that they didn’t have with
physical networks alone. The IEEE networking standard that defines
VLANs (or virtual local area networks) is 802.1Q. This standard details
how Ethernet frames will have a VLAN tag, or identifier, inserted into
them and how Ethernet bridges and switches will handle frames with
the VLAN tags. Any Ethernet frame that doesn’t have a tag stays on the
native VLAN, whereas frames that do have tags are only seen by other
network devices on that VLAN. Network links between switches that
carry multiple VLANs are called trunk links.

Understanding Linux Internetworking 79

Here are a few useful commands to see what’s going on:

• bridge link show. Check the status of the bridge links

• bridge vlan show. Check the status of the VLANs traversing
the bridge

• bridge fdb show. View the forwarding database

Overlay Networks with VXLAN
An overlay network is essentially a computer network that is built on top
of another network. The overlay network is commonly called the
“virtual network” that runs on top of an existing “physical network”
(and thus, the “overlay” and “underlay” terminology). It’s important to
note that VLANs discussed in the last section are an example of a virtual
network overlay on a L2 network.

 What is encapsulation?
Encapsulation is when one piece of data or packet on a
network is wrapped up in another type of data or
network packet. For example, a text file could be
encapsulated in an archive file. In networking,
encapsulation is used as a means to move traffic that might otherwise not
be able to traverse the communications mechanism. For example, you
may encapsulate an IP packet encapsulated in an Ethernet frame to move
traffic between local hosts, but encapsulation can even happen between
the same two protocols. IP could be encapsulated with IP. A common
modern-day example of encapsulation is the iSCSI storage protocol. In
an iSCSI system, iSCSI commands and a storage payload are
encapsulated inside a TCP packet, which is encapsulated inside an IP
packet, which is, in turn, encapsulated inside an Ethernet packet. This
multi-level encapsulation process enables what would have been local
SCSI storage commands to transparently traverse an Ethernet-based
TCP/IP network.

Understanding Linux Internetworking 80

VXLAN, or Virtual eXtensible LAN, is an overlay network that runs on
top of an existing IP network. VXLAN has a number of different use
cases, including creating a massively scalable network (up to 16.7
million possible networks) and connecting data centers at layer 2 across
a layer 3 network. VXLAN encapsulates frames with layer 3/4 (IP/UDP),
sending them over both layer 2 and layer 3 networks. The benefits of
VXLAN on layer 2 (IP) networks are global addressing, better scale,
more resiliency, and better use of available bandwidth.

The connections between endpoints are called VXLAN tunnels. These
VXLAN tunnels are encapsulating traffic as it flows across the network
between the VXLAN tunnel endpoints (also called VTEPs, or VXLAN
Tunnel EndPoints). The VXLAN encapsulation allows for the transport
of traffic over networks that end hosts do not need knowledge of. This
means a host could send an ARP request to another host, across the
network, through a VxLAN tunnel, and never know about the VxLAN
tunnel or the underlay network it travels through.

VTEPs can be implemented in hardware or software. The configuration
of VTEPs and creation of the overlay networks is typically implemented
using a commercial controller, such as VMware NSX or Midokura
MidoNet, or using a protocol such as BGP EVPN over VXLAN
(explained in the next chapter). However, some people build their own
special purpose controllers. Regardless of which of these techniques you
use, Linux provides the underlying VTEP building block.

If you have two Linux systems and you want to bridge them with
VXLAN, you would install a bridge on both systems, add a local IP
address to that bridge, and add a VTEP to that bridge pointing the VTEP
to the other Linux host (shown in Figure 4-4).

Understanding Linux Internetworking 81

Figure 4-4. Two Linux hosts connected with VXLAN

Linux System 1

sudo ip link add br0 type bridge vlan_filtering 1

sudo ip link add vlan10 type vlan id 10 link bridge
protocol none

sudo ip addr add 10.0.0.1/24 dev vlan10

sudo ip link add vtep10 type vxlan id 1010 local
10.1.0.1 remote 10.3.0.1 learning

sudo ip link set eth1 master br0

sudo bridge vlan add dev eth1 vid 10 pvid untagged

Linux System 2

sudo ip link add br0 type bridge vlan_filtering 1

sudo ip link add vlan10 type vlan id 10 link bridge
protocol none

sudo ip addr add 10.0.0.2/24 dev vlan10

sudo ip link add vtep10 type vxlan id 1010 local
10.3.0.1 remote 10.1.0.1 learning

sudo ip link set eth1 master br0

sudo bridge vlan add dev eth1 vid 10 pvid untagged

Now these two systems both exist on the 10.0.0.x/24 layer 2 network (via
the VXLAN overlay) even though they are connected by a layer 3 IP
fabric. It’s also worth noting that the hosts are completely isolated from

L3 (IP)
NETWORK

HOST 1 VTEP

BRIDGE
VLAN 10

eth1

HOST 2 VTEP

BRIDGE
VLAN 10

eth1

Understanding Linux Internetworking 82

the underlying layer 3 network.

Knowledge Check

Answer the following questions to check your knowledge
concerning Linux internetworking:

 • What’s the difference between layer 2 and layer 3 and
internetworking?

 • What are some of the different types of VLANs?

 • What is VXLAN and how does it help you?

Summary
You should now have a good understanding of the basics of Linux
internetworking. In this chapter, you learned about layer 2 versus layer
3 networking, bridging, routing, traffic filtering, and VXLAN. I hope
that you have enjoyed the chapter!

To learn about running a network operating system with Cumulus
Linux, head to the next chapter.

 Chapter 5

Cumulus Linux

Cumulus Linux is a Linux distribution that is focused on layer 2 and
layer 3 internetworking — switching and routing, respectively — using
off-the-shelf whitebox switching hardware to accelerate the packet
processing that would be done by software on traditional servers (see
Figure 5-1). This allows networking hardware controlled by Cumulus
Linux to achieve packet processing rates and functionality on par with
traditional switching and routing vendors such as Cisco Systems,
Juniper Networks, and others.

Figure 5-1. The Cumulus Linux architecture

Cumulus Linux 84

It’s important to know that the high-performance switched Ethernet
interfaces in Cumulus Linux are accelerated by hardware, and Cumulus
has made the decision to prefix these devices with “swp” (short for switch
port). Even if you went to another Linux distribution and renamed the
“eth” ports with “swp,” they wouldn’t be accelerated because they’re
missing Cumulus’ secret sauce.

Linux at the Core
Cumulus Linux makes complete use of the Linux networking model
that has been discussed in this book. All of the Linux networking tools
you’ve read about in prior chapters work on Cumulus Linux systems.
The Cumulus Linux distribution stays on the leading edge of Linux
networking, contributing to the rapid advancement of Linux kernel
networking functionality.

Latest and Greatest Networking Protocols
Internetworking requires protocols to interact with network peers and
provide the services for the underlying network model. For example, if
you want a Linux system to act as a router without having to painfully

 Hardware acceleration
While Linux networking can work on just about any
hardware, Cumulus Linux is best run on
commodity bare-metal switches that are hardware
accelerated. The “hardware acceleration” portion of
that means that the switches contain hardware called ASICs, specially
designed to switch frames and route packets, similar to how a graphics
card is specially designed for graphics. These ASICs are what make
routers and switches different from regular servers and allow them to
process hundreds of gigabits or even terabits of network traffic per
second.

Cumulus Linux 85

and manually manage what could be thousands of static routing rules,
you need to run a routing protocol, such as BGP, on the Linux system
so that you can automatically share IP routes with the rest of the
network. Cumulus Linux uses the following:

• FRRouting. OSPF, BGP, PIM routing protocols for layer 3
internetworking

• mstpd. 802.1 spanning tree protocols for layer 2
internetworking

• Linux kernel LACP. For link aggregation

• MLAG. For multi-chassis link aggregation

Network Command Line Utility (NCLU)
Throughout this book, you have learned the power that Linux offers
when used on the network. Linux networking offers numerous
commands, many of which seemingly perform similar functions, and
numerous text files that can be edited to manage network
configurations.

This complexity occurs because baseline Linux networking relies on the
wide variety of tools that we’ve spoken about in prior chapters.
However, the differences between these Linux networking tools can be
daunting, even for experienced Linux administrators. Imagine now just
how overwhelming they may be for those who are early in their Linux
networking journey.

Instead of trying to administer a Linux-powered network with hundreds
of command and configuration files, Cumulus Linux includes a
command line utility as part of the NCLU package that is invoked by
the net command to provide a consistent and helpful user interface.

Cumulus Linux 86

As we explore internetworking use cases throughout this chapter, I will
lean on net and show you how to leverage it while using Cumulus
Linux. One of the most useful facilities in NCLU is the built-in help
and examples (as shown below); I’ll point this out throughout the
chapter.

$ net help

Usage:

 # net <COMMAND> [<ARGS>] [help]

 #

 # net is a command line utility for networking on
Cumulus Linux switches.

 #

 # COMMANDS are listed below and have context
specific arguments which can

 # be explored by typing "<TAB>" or "help" anytime
while using net.

 #

 # Use 'man net' for a more comprehensive overview.

 net abort

 net commit [verbose] [confirm] [description
<wildcard>]

 net commit delete (<number>|<number-range>)

 net commit permanent <wildcard>

 net del all

 net help [verbose]

 net pending [json]

 net rollback (<number>|last)

 net rollback description <wildcard-snapshot>

 net show commit (history|<number>|<number-
range>|last)

 net show rollback (<number>|last)

 net show rollback description <wildcard-snapshot>

 net show configuration

Cumulus Linux 87

[commands|files|acl|bgp|multicast|ospf|ospf6|interface
<interface>]

Options:

 # Help commands

 help : context sensitive information; see
section below

 example : detailed examples of common workflows

 # Configuration commands

 add : add/modify configuration

 del : remove configuration

 # Commit buffer commands

 abort : abandon changes in the commit buffer

 commit : apply the commit buffer to the system

 pending : show changes staged in the commit buffer

 rollback : revert to a previous configuration state

 # Status commands

 show : show command output

 clear : clear counters, BGP neighbors, etc

Building a Better Bridge
One of the most basic networking use cases is a single transparent
bridge. In our example, we’ll put the interfaces named swp1, swp2, and
swp3 into a transparent bridge with swp3 connecting back into our
layer 2 bridge infrastructure (Figure 5-2).

net add bridge bridge ports swp1,swp2,swp3

net commit

Cumulus Linux 88

Figure 5-2. Transparent bridge using spanning tree

This simple example has a few noteworthy things going on. The first is
that we don’t need to use the sudo command for privileged access.
NCLU makes sure that the user has permission to invoke privileged
commands (or belongs to a group that has permission). The second is
that net puts commands into a “commit buffer” so that you can issue a
bunch of commands, review them in a pending state (with net
pending), correct them as needed, and then “commit” them to the
system with net commit.

Two Links Are Better Than One
A very typical layer 2 edge use case is using two switches to act like one
in a bond to a server. This provides for link- and switch-level
redundancy. These types of connections are called multi-chassis link
aggregations (MLAG), and they are typical of server connections in just
about any server deployment.

Figure 5-3 shows such a deployment with swp1 and swp2 connected to
servers (each is part of an 802.1ad bond on the server side), swp3 and
swp4 connected back to the network core, and swp5 and swp6 acting as
“peer links” between the two switches that form the redundant pair. In
the example, 100 VLANs are trunked to each of the servers. Try net
example clag for a few MLAG use cases and net example clag

BRIDGE

SERVER
1

SERVER
2

eth1 eth2

eth3

Cumulus Linux 89

l2-with-server-vlan-trunks for something close to what is
described here:

$ net add clag peer sys-mac 44:38:39:FF:00:01 interface
swp5,swp6 primary

$ net add vlan 100-199

$ net add clag port bond bond-to-spines interface swp3-4
clag-id 500

$ net add clag port bond host-01 interface swp1 clag-id
1

$ net add clag port bond host-02 interface swp1 clag-id
2

$ net commit

Figure 5-3. Two switches connected with MLAG

sw
p

3

sw
p

4

sw
p

3

sw
p

4

sw
p

2

sw
p

1

sw
p

1

sw
p

2

SERVER

SERVER

VLAN 100 VLAN 100

swp5 swp5

swp6 swp6

LAYER 2 (BRIDGED) NETWORK

Cumulus Linux 90

IP Fabrics Are Easy
A recent trend in modern network architecture (especially in data
centers) is to reduce the size of the broadcast domains and use layer 3
(IP routed) internetworking to create fabrics. A fabric is a simple, high-
speed, layer 3 network. The motivation behind this trend is that IP
networks scale better than layer 2 networks and behave better in the
face of unfortunate misconfigurations and failures.

Traditionally, layer 3 fabrics have been complex to configure because
every interface on a switch/router needs to exist on an IP subnet with its
link peer — a painstaking undertaking. Recent implementations of
BGP and OSPF, such as FRRouting in Cumulus Linux, include the
ability to connect routers via point-to-point links using “unnumbered”
interfaces.

 What is the leaf-spine network
topology?
Local area networks were originally designed
with a “three-tiered” network topology made up
of the Core, Aggregation/Distribution, and
Access layers. The spanning tree (STP) loop prevention protocol was
commonly used to prevent loops. As modern data centers became
much more dynamic, network architects realized the inefficiencies in
the three-tiered architecture and came up with a better design.

The leaf-spine network topology was introduced to ensure that all devices
have the exact same number of segments to the
core. The end result is that the leaf-spine
network has consistent network delay and low
latency. This is possible because there are
only two layers. The leaf-spine network
topology is best used in network data centers
to solve “east-west” data center traffic
(traffic between hosts in the data center).

Spine

Leaf

Cumulus Linux 91

Figure 5-4 shows the configuration of a leaf switch in a layer 3 leaf-spine
network built using BGP unnumbered. The leaf switch has a bridge
with swp1-4 that has the 10.0.0.0/24 IPv4 subnets. Swp5 through swp8
are connected to spines using BGP unnumbered, advertising
reachability of the bridge subnets to the rest of the network.

BGP unnumbered uses automatically assigned IPv6 addresses on the
unnumbered interfaces. There is no requirement for the loopback
interface (covered in Chapter 3), but it is recommended in order to
uniquely identify the network device that is putting routes into BGP
(the BGP Router-ID).

$ net add bgp autonomous-system 65001

$ net add loopback lo ip address 10.1.0.1/32

$ net add bgp ipv4 unicast network 10.1.0.1/32

$ net add vlan 1 ip address 10.0.0.1/24

$ net add bgp ipv4 unicast network 10.0.0.1/24

$ net add bgp neighbor swp5-8 interface remote-as
external

$ net add bgp ipv4 unicast neighbor swp5-8 activate

$ net add bridge bridge ports swp1-4

$ net commit

Figure 5-4. Creating a Layer 3 fabric with BGP

LEAF 1 LEAF 2
swp5 swp6 swp7 swp8 swp5 swp6 swp7 swp8

10.0.0.0/24

VLAN 1

ROUTING

SPINE 1 SPINE 2 SPINE 3 SPINE 4

lo
10.1.0.1/24

Cumulus Linux 92

BGP EVPN—L3 Network Virtualization for
Network Engineers
Many networks have the scale that requires layer 3 internetworking;
however, some applications still require layer 2 peering over the layer 3
fabric. One example of where this can be extremely useful is VMware’s
vMotion. The Ethernet Virtual Private Networks facilities built into
FRRouting’s BGP daemon allows us to use BGP to build both the IP
fabric as well as any distributed layer 2 overlays that are needed to
support your applications. BGP EVPN will take any MAC address
learned and advertise it to the remote EVPN peers. This allows each leaf
in the network to know where to send the Layer 2 VxLAN traffic
without flooding or the need for spanning tree.

This example builds on the network defined in the last section on IP
fabrics. This time, VLAN 100 provides layer 2 connectivity via an
overlay network. You’ll add a Virtual Tunnel EndPoint (VTEP) to
VLAN 100, send that VLAN tagged to all the hosts on the bridge, and
advertise all the layer 2 hosts to the rest of the network with EVPN.

The details of the configuration show a leaf switch in a layer 3 leaf-spine
network built using BGP unnumbered. The leaf switch has a default
VLAN (1) with swp1-4 that has the 10.0.0.0/24 IPv4 subnet and a second
VLAN (100) on swp1-4 that is tagged. Swp5 through swp8 are
connected to spines using BGP unnumbered, advertising reachability
of the bridge subnets to the rest of the network. VLAN 100 also has a
VTEP and is advertised via BGP EVPN. (See Figure 5-5.)

$ net add bgp autonomous-system 65001

$ net add loopback lo ip address 10.1.0.1/32

$ net add bgp ipv4 unicast network 10.1.0.1/32

$ net add vlan 1 ip address 10.0.0.1/24

$ net add bgp ipv4 unicast network 10.0.0.1/24

$ net add interface swp1-4 bridge trunk vlans 100

Cumulus Linux 93

$ net add vxlan vtep100 vxlan id 100

$ net add vxlan vtep100 vxlan local-tunnelip 10.1.0.1

$ net add vxlan vtep100 bridge access 100

$ net add vxlan vtep100 bridge learning off

$ net add vxlan vtep100 mtu 9216

$ net add bgp neighbor swp5-8 interface remote-as
external

$ net add interface swp5-8 mtu 9216

$ net add bgp neighbor swp5-8 interface remote-as
external

$ net add bgp ipv4 unicast neighbor swp5-8 activate

$ net add bgp evpn neighbor swp5-8 activate

$ net add bgp evpn advertise-all-vni

$ net commit

Figure 5-5. Creating a Layer 3 Fabric with EVPN

LEAF 1 LEAF 2
swp5 swp6 swp7 swp8 swp5 swp6 swp7 swp8

10.0.0.0/24

VLAN 100

ROUTING

SPINE 1 SPINE 2 SPINE 3 SPINE 4

lo

VLAN 1

VTEP
10.1.0.1/24

sw
p

1

sw
p

2

sw
p

3

sw
p

4

Cumulus Linux 94

Note: The VXLAN header used to build the layer 2 network in EVPN
makes Ethernet frames larger than the default of 1518, so you need to
include the maximum transmission unit (MTU). In this case, set it to 9216
(large enough to support “jumbo” frames) so that you don’t have to
worry about it ever again.

These use cases are just four examples of how Linux networking can be
easy, efficient, and powerful. If you'd like to try out more use cases and
commands, we recommend downloading Cumulus VX, a free
prototyping environment where you can test out your new Linux
networking skills.

Knowledge Check
Answer the following questions to check your knowledge

concerning Linux internetworking:

 • What makes Cumulus Linux unique?

 • How does the NCLU help you?

 • How does Cumulus Linux help you to bond links together?

 • What is EVPN?

 Next Steps

Your Cumulus
Linux Action Plan

In this book, you’ve learned the basics of Linux — from how to log in
to advanced Linux network configuration. With your newfound Linux
awareness, what’s your next step?

Tons of excellent resources are available in the Linux community,
including blogs, documentation, and videos. As a part of that
community, Cumulus Networks offers a plethora of learning resources
as well. Here’s your action plan for taking the next step with Cumulus
Linux:

Step 1: Gain Access to Cumulus Linux. You can do so in two different
ways:

• Access Cumulus in the Cloud. This is a pre-built virtual
Cumulus lab environment available at no cost. You can sign up
to access Cumulus in the Cloud at
https://cumulusnetworks.com/products/cumulus-in-the-cloud/

OR

• Download the Cumulus virtual appliance, Cumulus VX.
Cumulus VX is available for VMware, VirtualBox, KVM, and
Vagrant. The Getting Started Guide will walk you through how
to deploy it, power it on, log in, and start configuring all the
Linux networking that was demonstrated in this book.
Download Cumulus VX at
https://cumulusnetworks.com/products/cumulus-vx/

Your Cumulus Linux Action Plan 96

Step 2: Check out the Cumulus Learning Resources at
https://cumulusnetworks.com/learn/web-scale-networking-resources/

Here you’ll find case studies, videos, validated designs, and white papers
that will show how Cumulus Linux is being used in real data centers
around the world.

Step 3: Join the conversations about Cumulus Linux in the Cumulus
Slack Community at https://cumulusnetworks.slack.com/

